Epidemiology in Texas 1993 Annual Report

Epidemiology in Texas 1993 Annual Report

Associateship for Disease Control and Prevention
Texas Department of Health
1100 West 49th Street
Austin, Texas 78756

David R. Smith, MD Commissioner

Carols. Daniels Deputy Commissioner for Programs

Roy L. Hogan
Deputy Commissioner for Administration
Diane Simpson, PhD, MD, MPH
Associate Commissioner of Disease Control and Prevention

Members of the Board of Health

Ruth F. Stewart, MS, RNC Chair
Ramiro R. Casso, MD
Vice-Chair

David L. Collins, PE
William A. Scott, LMSW-ACP
Stephen L. Tatum
Betsy Triplett-Hurt

Contributors

Associateship for Disease Control and PreventionDiane Simpson, PhD, MD, MPH, Associate Commissioner
Immunization Division
Robert Crider, J., MS, MPA, Division DirectorLisa Besselink, MHA
Harold Higgins, MS
Xuan-Nguyen Huynh
Jan Pelosi, MPH
Bureau of Chronic Disease
Philip Huang, MD, MPH, Bureau Chief
Jane Harman, DVM, PhD
Cancer Registry Division
Nancy Weiss, PhD, Division DirectorBarry Wilson
Bureau of Communicable Disease Control
Michael Kelley, MD, MPH, Bureau Chief
Erik Svenkerud, MD, MPH
Infectious Disease Epidemiology and Surveillance Division
Kate Hendricks, MD, MPH\&TM, Division Director
Russell Larsen, PhD, MPH
James Perdue
Julie Rawlings, MPH
Beverly Ray, RN, CIC
Jim Schuermann
Lynne Sehulster, PhD, M(ASCP)
Christina Stovall, MSPH
Jeffery Taylor, MPH
Tuberculosis Elimination Division
John Bybee, Division DirectorShawn Safarimaryaki, MD, MPH, MS
Zoonosis Control Division
Keith Clark, DVM, PhD, Division Director
Pamela Wilson, RVT, MEd, CHES0
Bureau of EpidemiologyDennis Perrotta, PhD, CIC, Bureau Chief
Non-Communicable Disease Epidemiology and Toxicology Division
Jean Brender, RN, PhD, Division Director
Kathryn Berry, MS, CIH
Julie Borders
Betty Brown, RN, MPH
Kathryn Evans, MPH
Richard Harris
Judy Henry, MS
Mandy Holt
Nancy Ingram
Susan Prosperie, MS
Diana Salzman, MPH
Patricia Schnitzer, PhD
John Villanacci, PhD
Laurie Wagner
Teresa Willis
Injury Prevention and Control Program
David Zane, MS, Program Director
Penny Finuf, MSN, RNCSGulnur Ford
Jennifer Hunteman
Mary Jo Preece
Michael Skrabanek, MA
Gene Willard, MA
Texas Birth Defects Monitoring Division
Mark Canfield, PhD, Division Director
Dan Driggers
Nagla Elerian
Bureau of HIV and STD Prevention
Charles Bell, MD, Bureau Chief
HIV and STD Epidemiology Division
Joann Schulte, DO, Division Director
Doug Hamaker
Susan Kollath
Barry Mitchell, MPH

Associateship for Health Care Delivery

Beverly Koops, MD, Associate Commissioner
Bureau of Women and Children
Patti Patterson, MD, Bureau Chief

Women's Health Division
ScottSimpson, MD, Division Director

Associateship for Health Care Quality and Standards
Ron Mansolo, Associate Commissioner
Bureau of Vital Statistics
Rick Bays, BBA, Bureau Chief

Division of Statistical Services
Tom Pollard, Division Director
Gary Rutenberg, PhD

Acknowledgments

In the past, the responsibility for producing the Epidemiology in Texas Annual Report has fallen primarily on one person who usually had to suspend all other work activities for several months. Under the direction of a guidance team consisting of program and division directors, bureau chiefs, and the Associate Commissioner of Disease Control and Prevention - the 1993 Annual Report was produced by a project team of representatives from each contributing program.

This method of production has enabled the staff working on the project to continue their regular work responsibilities while producing the report, spread the responsibility and ownership of the project among several individuals, trained these individuals in the steps necessary to produce a major publication, and enabled the 1993 Annual Report to be developed quickly while retaining its quality.

Along with the authors and other contributors to the Epidemiology in Texas: 1993 Annual Report, I would like to recognize the following project team members for their excellent work:

1993 Annual Report Project Team

Lisa Besselink, MHA	
Immunization Division	Jim Schuermann Infectious Disease Epidemiology and Surveillance Division
Debra Hack Bureau of Epidemiology	Christina Stovall, MSPH Infectious Disease Epidemiology and Surveillance Division
Barry Mitchell, MPH Bureau of HIV and STD Prevention	Ann Tyree, MS Tuberculosis Elimination Division
Wanda Rinehart	Pamela Wilson, RVT, MEd, CHES Bureau of Chronic Disease
Zoonosis Control Division	

In addition to the project team members and authors, other people contributed their services to this report. I also would like to thank the following people for their assistance:

J. Pablo Bastida	Sharon King	Lois Terrell
Letty Cano	Mattie Larry	Maria Vega
Lisa Doggett	Julie Marangi	David Villasenor
Elaine Heinzke	Guy Moore	Rebecca Wood
Yvonne Holguin	Sylvia Perry	Kirbi Woods
Michael Horne	Brad Prescott	Betty Woytek
Lois Kantor	Melissa Samples-Ruiz	
Brian King	Tina Sheffield	

Diane Simpson, PhD, MD, MPH
Associate Commissioner
Disease Control \& Prevention

Contents

Contributors iii
Acknowledgments vi
Foreword x
Preface xi
Reports
Brucellosis 1
Cancer Cluster Investigation 2
Cholera 5
Drowning Mortality _ With Estimates of Near Drowning 6
Escherichia coli O157:H7 Outbreak Investigation 7
Firearm-Related Injury Surveillance 9
Haemophilus influenzae type b Infections. (Invasive) 15
Hantavirus Pulmonary Syndrome 16
Hazardous Substances Emergency Events Surveillance 17
Health Risk Assessment of Toxic Substances 21
Hepatitis. Viral 26
HIV/ AIDS 36
Immunization Levels: A RetrospectiveSurvey 40
Influenza and Flu-like Illness 42
Injury: Progress in Meeting Year 2000 Objectives 46
Malaria 49
Measles 51
Meningococcal Infection 53
Neural Tube Defects in Texas: Recent Trends 54
Occupational Disease Surveillance 62
Pertussis 67
Plague 69
Rabies, Human Case 71
Rabies in Animals 72
Rabies Postexposure Treatment in Humans 74
St. Louis Encephalitis 76
Salmonellosis 77
Sexually Transmitted Diseases 78
Shigellosis 80
Smoking: Access of Minors to Cigarette
Vending Machines 82
Tetanus 85
Tick-borne Diseases 86
Traumatic Brain Injuries 88
Traumatic Spinal Cord Injuries 90
Tuberculosis 92
Tuberculosis DNA Fingerprinting 94
Tuberculosis Drug Resistance Study 95
Tuberculosis Laboratory Reporting Survey 97
Regional Statistical Summaries
Public Health Regions 1 - 11 98
Appendix A: Reported Cases of Selected Diseases:
Tables I - VII 150
Appendix B: Reportable Conditions in Texas 157
Appendix C: Glossary 158

Foreword

The mission of any state health agency is to promote and protect the health of the people of the state. In its report, The Future of Public Health, the National Academy of Sciences suggests that the substance of public health "rests on the scientific core of epidemiology." Identifying the patterns of diseases, harmful exposures, and injuries is a central function of public health epidemiology. These patterns often change rapidly and require constant vigilance.

Developing appropriate and aggressive methods to control human illness and injury is a difficult task that begins with understanding the causes. Combining the methods and concepts of epidemiology, toxicology, microbiology, human behavior, and physics allows robust investigations into the causes of a wide variety of health concerns. This report describes trends and selected investigations of human health concerns conducted by the Texas Department of Health in 1993.

As described in an Institute of Medicine report, Emerging Infections: Microbial Threats to Health in the United States, newly discovered infectious agents have joined ranks with old public health foes to challenge the nation's public health response. In 1993, this trend was evident in Texas as well. The newly discovered hantavirus pulmonary syndrome was identified in Texas, as were human illnesses caused by infection with E. coli 0157: H7. Animal rabies continues to spread, and a case of human rabies was identified in 1993. Surveillance trends for 1993 document the continued decline in illness caused by Haemophilus influenzae type b, a dramatic reduction in measles cases, and a slight decrease in new tuberculosis infections. Infection with the human immunodeficiency virus continues to have a devastating effect on public health.

The scope of epidemiologic activities beyond infectious diseases expanded in Texas in 1993. Surveillance and special studies of near drownings, traumatic spinal cord injuries and brain injuries, and firearm-related injuries helped define the scope and magnitude of injury as a leading cause of death and premature disability in Texas. Investigations of anencephaly expanded to include the entire state and a special focus on Hispanic origin, public hospitals, border counties, and urban prevalence. Human health concerns related to exposures to toxic substances in the workplace and environment continue to require solid scientific inquiry. An evaluation of adolescent exposure to an important public health problem, cigarettes, indicates that more work is needed to reduce access through vending machines.

The Texas Department of Health will continue to study the infectious diseases, harmful exposures in the workplace and environment, and injuries which threaten the health of the citizens of Texas. With the united efforts of private and public health providers; local, state, and federal agencies; and, of course, the people of Texas - the goal of healthy Texans in the year 2000 can be attained.

Preface

Disease Surveillance

Public health agencies use surveillance to target interventions; to set program priorities; and to plan, implement, and evaluate their programs. Epidemiologic surveillance includes systematic collection, analysis, interpretation, and dissemination of a variety of health data including demographic, environmental, laboratory, morbidity, and mortality data. Surveillance also includes obtaining and evaluating information on animal reservoirs and vectors, investigating epidemics and individual cases of diseases and/or conditions, and conducting special studies and surveys.

Disease surveillance in Texas has relied on a reporting system whereby physicians notify their local health authorities of infectious and other reportable diseases and conditions. These reports are forwarded to the Texas Department of Health. Surveillance data must be current and complete if actual occurrence and distribution of disease are to be understood. During 1993 several programs were responsiblefor coordinating the surveillance of infectious disease, chronic disease, occupational disease, injury, and environmentally related conditions in Texas. These programs included the Infectious Disease Epidemiology and Surveillance Division, the Zoonosis Control Division, the Noncommunicable Disease Epidemiology and Toxicology Division, the Injury Control Program, the TuberculosisElimination Division, the Immunization Division, the Bureau of HIV and STD Prevention, and the Bureau of Chronic Disease.

The Reporting System

The Rules \mathcal{E} Regulationsfor the Control of Communicable and Sexually Transmitted Diseases \mathcal{E} Reporting of Occupational Diseases (TDH Stock No. 6-101) require that all disease reports (with a few exceptions) include the patient's name, age, sex, race, ethnicity, city of residence, physician's name, date of onset, occurrence, and method of diagnosis. The exceptions are as follows. Influenza and flu-like illnesses are reported by number of cases. Chickenpox is reported by number of cases by age group. Each HIV infection in a person older than $\mathbf{1 3}$ is reported by a unique number made up of that individual's, sex, race, ethnicity, and county and zip code of residence. For specific diseases, additional epidemiologic data may be requested, and in outbreak situations, it may be necessary to identify susceptible individuals and to recommend specific control measures. Morbidity data on reportable diseases and conditions also are obtained through other means such as laboratory reports, completed case investigationforms, and death certificates that have been filed with the TDH Bureau of Vital Statistics. Statistical summaries of these data are published bimonthly in Disease Prevention News, a newsletter distributed statewide to health officials and other interested persons.

A current list of reportable conditions is included in the appendix. The appendix also includes phone numbers where professionalstaff, including epidemiologists, may be reached for consults. The phone numbers of the divisions are included with the reportable conditions list in the appendix. Reporting forms may be obtained by calling the various divisions to which reports are made.

Explanatory Notes

This report contains data for the 1993 reporting period, which extended from January 1, 1993 through December 31,1993. Patients either had onset of disease during the 1993 calendar year or their cases were first reported in 1993. If the individual became ill or was hospitalized, diagnosed, or exposed in another location, the county of residence was counted for case morbidity. Individuals who resided outside Texas but who became ill and were hospitalized or diagnosed in Texas were not included in Texas morbidity or this report, with the exception of cases identified by the Hazardous Substances Emergency Events Surveillance program. Nonresidentcases were referred through an interstate reciprocal notification system to the appropriateState Epidemiologist in the state where the individuals resided.

All incidence rates in this report are expressed as the number of reported cases of a disease per 100,000 population unless otherwise specified. Limitations inherent in population projections, as well as underreporting, affect rate comparisons fordifferent population groups or time periods. Rates based on small frequencies should be interpreted with caution since samplingerrors may be large. State and county population data used in computing incidence rates were provided by the TDH Bureau of State Health Data and Policy Analysis (BSHDPA). Case fatality rates (CFR) describe the number of persons who died from a specific disease or cause compared to the total number of reported cases of that particular disease or condition.

The Associateship of Disease Control and Prevention has adopted the race/ethnicity definitions provided by the U.S. Department of Commerce and published in the Centers for Disease Control and Prevention's Manual of Procedures for National Morbidity \& Public Health Activities. The category which most closely reflects an individual's recognition in his or her community is used for purposes of reporting persons who are of mixed racial and/ or ethnic origins.

White: Persons having origins in any of the original people of Europe, North Africa, or the Middle East.

Hispanic: Persons of Mexican, Puerto Rican, Cuban, Central or South American, or other Spanish culture or origin regardless of race.

African-American: Persons having origins in any of the black racial groups of Africa. (CDC uses the term 'black.")

Asian or Pacific Islander: Persons having origins in any of the original peoples of the Far East, Southeast Asia, the Indian subcontinent, or the Pacific Islands (includingChina, Japan, India, Korea, the Phillipines, and Samoa).

American Indian or Alaskan Native: Persons having origins in any of the original peoples of North America and who maintain cultural identification through tribal affiliation or community recognition.

Brucellosis

Thirty-four cases of human brucellosis with onset during 1993 were reported from Texas, up 25% from the 27 cases reported the previous year. Hispanics (97%)made up the overwhelming majority of cases; males outnumbered females 21 (62\%)to 13. One infection occurred in a 30-year-old non-Hispanic white male.

Human brucellosis in Texas has evolved from an occupationally-associated disease of adult males to a foodborne illness, affecting both. sexes and all ages; it is confined almost exclusively to the Hispanic population. The principal source of exposure is consumption of contaminated dairy products (usually cheese) made in Mexico from unpasteurized goat milk. Proper pasteurization eliminates Brucella species from milk.

Compared with occupationally-acquired brucellosis, foodborne brucellosis has the potential to affect the young and the elderly disproportionately. Nine (26% cases occurred among persons less than 15 years of age, the youngest of whom was four; four (12%) were in persons older than 65 years, the eldest of whom was 76. All of these individualswere Hispanic, and four (31\%) were female.

Laboratory confirmation through Brucella sp. cultures was made for 27 (79\%)cases. Seven were confirmed serologically. All 27 positive cultures were Brucella melifensis, the species associated with dairy products made from unpasteurized goat milk. Consumption of Mexican dairy products (almostexclusively goat cheese and milk consumed in both Mexico and Texas) was reported by 28 patients. The single non-Hispanic patient was one of two who reported "possibly/probably" consuming dairy products in Mexico. In four Hispanic patients, no obvious exposure history was available. However, two of these individuals had culture-confirmed B. melifensisinfections, and one other (confirmed serologically) reported regular travel to Mexico.

Exposure to contaminated food items increases the potential for clusters of infections among family members. In 1993, 18 (53\%)patients comprised six differentclusters that included a husband and wife in Travis County; a husband, wife, niece and nephew in Cameron County; a brother, sister and cousin in Hidalgo County; and three groups in Dallas County consisting of a brother and sister, three brothers, and four males. All of these individuals were Hispanic and B. melifensis was isolated from at least one member of each group.

The infected couple from Travis County had onset of illness in March, but only the husband was diagnosed with brucellosis. The wife continued to have recurringepisodes of 'flulike" symptoms until being diagnosed with brucellosisin March 1994. The Cameron County cluster included a fifth individual who was diagnosed and treated in Mexico. All three members of the Hidalgo County cluster were children aged 6,8 , and 8 years. The brother and sister residing in Dallas County reported additional family members ill in Mexico, while the three brothers (aged 4,5, and 6 years) had a grandmother in Mexico who had made the cheese that may have been the source of their infections. The four males (ranging in age from 11 to 31 years) had eaten goat cheese brought to Dallas from Mexico.

Recognition of a single case of human brucellosis, especially involving patients of Hispanic heritage with a history of consuming dairy products of Mexican origin, should prompt suspicion and questions regarding the possibility of similar illness in others, especially family members.

Infectious Disease Epidemiology and Surveillance Division (512) 458-7328,458-7676

Cancer Cluster Investigations

Introduction

On a weekly, sometimes even daily basis, the Texas Department of Health receives calls from individual citizens, physicians, environmental groups, and other state agencies ${ }^{-}$all with concerns about cancer. How much cancer is there in this area? Is there too much cancer in my neighborhood? Is industry X responsible for the cancer in my community? What causes the cancer? What can we do about it?

Many of the concerns and questions can be addressed simply by providing accurate information about cancer and attempting to correct misconceptions. Two of the leading misconceptions about cancer are that cancer is a rare disease and that everything (particularly environmental contamination or pollution) causes cancer.

Cancer is, in fact, a very common disease, with one out of three people diagnosed with some type of cancer during their lifetimes. Cancer is also the second leading cause of death in Texas, with nearly 31,008 Texas residents dying of cancer in 1993. Although many risk factors have been identified for specific cancers, the causes of many cancers are still unknown. However, Doll and Peto, two leading epidemiologists in the field of cancer research, have estimated that 30% and 35% of all cancers may be due to tobacco use and diet, respectively. They have estimated that only $4-6 \%$ of all cancers may be due to pollution and/or occupational exposures.

Although many of the calls and questions can be answered through educational efforts, a substantial number of the inquiries resultin a formal investigation to

- examine the occurrence of cancer (incidence or mortality)in a defined geographic area
- determine if there is an excess of cancer for that area

In 1993 the Health Studies Program in the Bureau of Epidemiology and the Cancer Registry Division conducted 55 cancer cluster investigations that addressed concerns of people living throughout the state (see Figure 1).

Figure 1. Cancer Cluster Investigations by County of Reported Cluster, 1993

Investigation Protocol

The protocol for the investigation of a reported excess of cancer employs a three-tier methodology. Tier 1 involves gathering from the person/ agency making the inquiry pertinent information that includes

> location of the alleged cluster
> cancer(s) of concern
> number of cases
> time period of concern
> + environmental concerns

Information regarding general cancer facts and known risk factors for specific cancers are provided to the person or group making the inquiry. In many instances, the investigation is concluded at this point. If not, the investigation proceeds to Tier 2.

Tier 2 involves the analysis of cancer incidence or mortality data for the geographic area of concern. The Cancer Registry Division is the repository of cancer incidence and mortality data for the state. The data are analyzed at either the city or county level and are compared with state or national rates. \mathbf{F} the number of cancer deaths or cases is not statistically elevated, the investigation is concluded, and a
report of the findings is forwarded to the person/agency that initiated the inquiry. If the number of cases is statistically elevated, further study may be warranted. The majority of the investigations, however, are concluded in Tier 2.

Additional studies conducted in Tier 3 may involve a variety of methodologiesincluding

- review of death certificates or hospital records to gain additional information on specific cases
- administration of a questionnaire to individuals diagnosed with cancer to determine possible risk factors
- formal epidemiologic study of a specific population or community

Investigations

Fifty-five investigations were conducted in 1993 by the Cancer Registry Division and the Health Studies Program, Bureau of Epidemiology. The majority of the investigations (62\%)were initiated by individual citizens. Sixteen percent of the investigations originated with inquiries from staff within TDH for internal projects or as parts of other investigations. Environmental groups, physicians, other state agencies, and the media accounted for the remainder of the investigations (see Figure 2). Of the investigations initiated by individual citizens, the majority (59%)were initiated by women and the remainder (41\%) by men.

Figure 2. Origin of Initial Cluster Inquiry 1993

Cancer cluster investigations may cover any type of geographic division or area. Investigations typically involve the analysis of data for a single county or city, but may involve multiple counties or entire public health regions. Of the 55 investigations conducted in 1993, 28 (51%) were conducted at the city level; 24 (44\%)at the county level, with three investigations involving multiple counties; and three (5\%)were conducted at both the city and county level.

Two types of data are available for analysis in cancer cluster investigations: mortality data and incidence data. Mortality data were used in the vast majority (78%) of investigations in 1993 because mortality data are complete for the entire state. While many hospitals across the state are in compliance with state law that requires them to report new cases of cancer, many are not complete in their reporting of cases. For several regions of the state, cancer incidence data are not complete and cannot be used in the investigation of reported clusters.

The five leading causes of cancer mortality in Texas are lung cancer, breast cancer, prostate cancer, colon cancer, and pancreatic cancer. The five leading cancers of concern in the investigations conducted in 1993 were almost identical to the leading causes of cancer mortality statewide, with the exception of pancreatic cancer. The five cancers most often listed as cancers of concern in the cancer cluster inquiries were breast cancer, prostate cancer, colon cancer, leukemia, and lung cancer. Pancreatic cancer ranked eighth out of 24 specific cancer types examined in the 55 investigations conducted in 1993. Table 1 lists the top ten cancer sites of concern in the 1993 investigations.

For the majority of the 55 cancer cluster investigations conducted in 1993, multiple cancer sites were evaluated for both males and females. Overall, approximately 520 separate analyses were conducted for specific cancer site and gender combinations. Of the 520 analyses, only seven percent showed a statistically elevated excess number of cancers. Elevated cancer rates were detected more often in males than females. Lung cancer was the type of cancer most often reported at significantly elevated levels for both males and females followed by prostate and breast cancer.

For each of the investigations in which a significant elevation of either cancer incidence or mortality was found, further study was conducted. In many cases, the detailed review of individual case data revealed the presence of known risk factors for the cancer site of concern (e.g., smoking and lung cancer). For selected investigations, however, special surveillance projects were initiated.

Non-Communicable Disease Epidemiology and Toxicology Division (512) 458-7222,458-7269

Cholera

Vibrio cholerae is the etiologic agent of cholera, a potentially severe diarrheal disease of humans. Two cases of V. cholerae $\mathbf{O 1}$ infection were reported to TDH in 1993. Customarily, epidemic cholera is associated with toxigenic V. cholerae that possess the somatic antigen group O1. Using physiologic properties, the bacterium may be classified as either of two biotypes, El Tor or Classical, and as one of two serotypes, Inaba or Ogawa. Nontoxigenic V. cholerae O1 and V. chobrae non-O1 also can cause diarrheal illness.

The two cases occurred in July. The first patient, a 35-year-old Hispanic shrimper, was a resident of Cameron County. He was hospitalized with diarrhea, weakness, and leg and stomach cramps. His stool culture was positive
for nontoxigenic V. cholerae O1 serotype Ogawa biotype El Tor. He had a travel history to Matamoros, Mexico, three days prior to onset of illness. No source for his infection was found.

The second patient was a two-year-old Hispanic boy - a resident of Harris County who had just returned from Monterrey, Mexico. He was hospitalized in Houston the day after his return with diarrhea, nausea, and vomiting. His stool culture was positive for V. cholerae O1; serotyping and biotyping was not done. Except for his travel history to Mexico, no other likely source of infection was found.

Infectious Disease Epidemiology and Suweillance Division (512) 458-7328,458-7676

Drowning Mortality -- With Estimates of Near-Drowning

Drowning is classified into two major categories. The larger group, numbering 367 deaths in 1993, includes drownings not related to boats. These include drownings in bathtubs, swimming pools, and natural bodies of water. The smaller group, accounting for 46 deaths in 1993, involves boats. The following focuses only on the 367 residents that drowned in non-boating incidents.

Drowning is the sixth leading cause of unintentional injury death among Texans of all ages. Among those aged five through 44, drowning is the fifth leading cause of unintentional injury death; and among children less than five years of age, drowning is the second leading cause of unintentional injury death.

Figure 1 illustrates that males are much more likely to drown, at every age, than females. The highest drowning rates are among children less than five years of age.

The Texas counties with the most resident drownings in 1993 were Harris (57), Dallas (29), Bexar (28), Cameron (20), Tarrant (18), Travis (14), Fort Bend (11), and Hidalgo (11).

In addition to the devastation caused by drownings, many more individuals suffer extreme, permanent cognitive and/or motor disability resulting from a near-drowning incident. (Near-drowningis defined as survival for at least 24 hours following asphyxiation due to submersion in water). Families and friends
share the tremendous, life-long emotional and financial burden of near-drownings. The health care system also shares the heavy financial burden. It is estimated that for every ten persons who drown, approximately 40-80 others survive a near-drowning. Among children, this relationship is more profound. For every ten children who drown, 176 others survive a near-

Figure 1. Drownings (Non-Boating): Texas, 1993

drowning (for each child who drowns 36 are admitted to hospitals and 140 are treated in emergency rooms).

As of 1993, data on near-drownings in Texas are not collected on a state-wide basis. However, based on the number of Texans who drowned, it can be estimated that from 1,468 to 2,936 others survived a near-drowning incidentin 1993.

Inju y Prevention and Control Program (512) 458-7266

Escherichia coli 0157:H7 Outbreak Investigation

E. coli $\mathrm{O} 157: \mathrm{H} 7$ infection officially became a notifiable condition in Texas in February 1994. However, during October 1993, an alert infectious disease physician in a Fort Worth hospital recognized an unusual cluster of three cases of hemolytic uremic syndrome (HUS) in the pediatric intensive care unit during a two-week period. He reported this cluster to Texas Department of Health (TDH) regional personnel. Each of the patients was three years old; two were females, and one was male. Two had culture-confirmed E. coli O157:H7 infections. There was one fatality.

To determine whether this was a common source outbreak and to search for related cases, TDH issued a notice requesting immediate reports of all culture-confirmed cases of E. coli $\mathrm{O} 157: \mathrm{H} 7$ infections and all cases of HUS. As a result of this request, ten cases of either culture-confirmed E. coli O157:H7 infections or HUS were detected statewide (Figure 1). Of these ten cases, seven were due to HUS (two of which resulted in death). Test resultsfor seven cases were culture-positive for E. coli $\mathbf{O} 157: H 7$. Ages ranged from 21 months to 71 years. Six of the patients were female, four were male.

The TDH Infectious Disease Epidemiology and Surveillance Division initiated an epidemiologic investigation of all ten patients. The patients' families were interviewed to collect the following information:

- onset dates
- concurrent diarrheal illnesses within the family
- involvement with day care centers (either as an employee or an attendee)
- consumption of milk, ground beef, and fresh vegetables
- food sources
- exposure to livestock and/or dairy operations

Figure 1. E. coli 0 157:H7 Cases by County, October 1993

When available, ground meat samples were collected from the home and cultured for E. coli O157:H7. All samples were negative.

Most of the patients had multiple risk factors. Each had a history of eating ground beef in the seven-day period prior to onset of symptoms. Three patients either resided on or adjacent to a dairy or feedlot operation. Two drank water from a well on or adjacent to the cattle operation. One had direct exposure to calves from the dairy operation. Five of the families either had a home garden (twofertilized with manure) or ate vegetables from a home garden. Three of the patients attended three different day-care centers.

Genetic mapping of the bacterialisolates by pulsed field gel electrophoresis (PFGE)identified four separate serotypes. The isolates from the patients residing in Dallas and Potter Counties and in Erath and Harris Counties genetically matched.

TDH representatives visited the three day care centers. Fecal specimens were obtained from all attendees who met any of the following criteria:

- were assigned to the same room as an index case patient
- had diarrhea on the day the cultures were taken
+ were in diapers

One asymptomatic case was identifiedin the first day care center; two others were identified in the second. No cases were identified in the third day care center. In each situation, PFGE performed on the positive cultures identified the same serotype as the matching index case.

Infectious Disease Epidemiology and Surveillance Division (512) 458-7328,458-7676

Firearm-Related Injury Surveillance

In Texas, firearms continue to surpass motor vehicles as the leading cause of injury death. In 1992, there were 3,447 firearm-related deaths compared with 3,147 motor vehicle-related fatalities. Firearm-related injuries are the leading cause of mortality for Texans aged 1 to 44 years (69% of the state population). In 1991, 36% of all the deaths to Texans aged 15 to 19 years were related to gunfire.

The appalling toll of suffering, injury, and death caused by firearms underlines the need for more research in the area of firearm-related injuries. Greater understanding of the epidemiology of the mortality and morbidity associated with firearms is required to develop effective prevention strategies. Furthermore, interdisciplinary collaboration between public health and criminal justice researchers is needed to further our fundamental understanding of this issue.

The Texas Department of Health (TDH) Injury Control Program led a multidisciplinary effort to collect and analyze population-based epidemiologic data on firearm-related mortality and serious morbidity in one Texas community. Medical and financialinformation on firearmrelated deaths and hospitalizations were collected and linked with police reports to obtain data on the circumstances of the gunfire. This report describes the process and resulting data.

Methods

A retrospective review was conducted of all firearm-related mortality and hospitalizations occurring in Travis County from January 1, 1991 through December 31,1992. Travis County is located in Central Texas and has a population of 576,407 .

Mortality information of Travis County residents was obtained from the TDH Bureau of Vital Statistics and the Travis County Medical Examiner's Office. Death records were included of Texas residents, in whom the underlying cause of death was a firearm-related
injury (InternationalClassification of Disease code E922.0-922.9, E955.0-955.4, E965.0-965.4, E970, or E985.0-985.4). Information abstracted from death certificates and medical examiner's files included victim's name, race, sex, age, date of death, county of residence, weapon type, caliber, intentionality, victim-offender relationship, and place of occurrence. In addition, years of potential life lost (YPLL) were calculated for those residents dying from a firearm-related injury. YPLL is a statistic used to measure premature mortality. It represents the sum of years of life lost annually by individuals who die before the age of 65 .

Medical record information on all persons hospitalized for treatment of firearm injuries at BrackenridgeHospital in Austin from 1991 through 1992 were reviewed. Individuals treated for firearm-related injuries in the emergency room without being admitted were not studied. BrackenridgeHospital is the regional trauma center in Central Texas. A survey of other city hospitals determined that no other facility besides Brackenridge Hospital admitted patients for firearm-related injuries. Information abstracted from the medical record included patients's name, race, sex, age, date and time of admission, date of discharge, discharge status, county of residency, and anatomic location of the gunshot wounds. Hospital financial charge data (excluding physician fees) and payment source were also collected.

Information on firearm-related deaths and hospitalizations were then linked by victim/ patient name with local law enforcement records. Upon linkage, code numbers were assigned and names destroyed. Reports from the Austin Police Department were reviewed to collect information on the circumstances surrounding the gunfire. This included date and time of the shooting, weapon type, victimoffender relationship, place of occurrence, intentionality, and other factors related to the shooting (e.g., robbery, gangs, drive-bys, drug trafficking, arguments).

All data collected were analyzed using Epi Info, Version 6. Population estimates were obtained from the TDH Bureau of State Health Data and Policy Analysis.

Results

Mortality. Death certificate review revealed that during the two year study period, 155 Travis County residents died as a result of firearm-related injuries (13.2 deaths per 100,000 population). In 1991, 76 deaths were associated with firearms; there were 79 such deaths in 1992. On average, six county residents died from gunfire each month. During the two-year study period, firearms accounted for 4,604 years of potential life lost.

Table 1 provides firearm-related mortality rates by age, gender, and race. Males were five times more likely to be killed by gunfire than were females. Those aged 15 to 19 years had the highest firearm-related death rate (25.7 deaths per 100,000 population). African-Americans had 2.2 times higher mortality rates than whites and twice the rate of Hispanics. African-American males, aged 15 to 19 years, had the highest firearm-related death rate of any group (145 deaths per 100,000 population).

Table 1. Firearm-Related Mortality Rates by Age, Gender, and Race:
Travis County Residents, 1991-1992
Rate per 100,000
Category Population
Gender
Male
22.0

Female
4.4

Age (Years)
10-14
2.8

15-19
25.7

20-24 15.5
25-29
18.1

30-34
16.6

35-39
12.4

40-44 20.7
45-49
18.1

50-54
18.2

55-59
2.7

60-64
12.2

65-69
13.8

70-74
4.4

75+
19.9

Race/Ethnicity
African-American 25.7
Hispanic 12.4
White (non-Hispanic) 11.5

Figure 1. Firearm Related Mortality by Intentionality Travis County Residents, 1991-1992

Figure 1 illustrates firearm-related mortality categorized by intent. Of the 155 firearm-related deaths, 81 (52\%)were self-inflicted, 66 (43\%) were homicides, and eight (5\%)were other circumstances. The "other" circumstances were seven unintentional deaths and one death by legal intervention.

One hundred thirty-six (88%) of the 155 firearm-related deaths occurred in Travis County. Medical examiner files were found for $130(96 \%)$ of these fatalities.

Medical examiner data were available for 75 (93%) of the 81 firearm-related suicides. Results included:

- $81 \%(61 / 75)$ occurred in the victim's own residence
- $55 \%(41 / 75)$ occurred on Monday, Wednesday, or Thursday
- $77 \%(49 / 64)$ involved handguns (most used calibers: .38, .22, and .357)

Medical examiner data was located for 53 (80\%) of the 66 firearm-related homicides.

Resultsincluded:

- $52 \%(23 / 44)$ were shot in one concentrated area of East Austin
- $49 \%(26 / 53)$ occurred on Friday through Sunday
- $83 \%(33 / 40)$ involved handguns (most mentioned calibers: .22, .25, and .38)
$+94 \%(30 / 32)$ of the victims reportedly knew their assailants (e.g., acquaintances, spouses/lovers, other family members)

Serious Morbidity (Hospitalizations). Fire-arm-related injuries resulted in 268 hospitalizations at Brackenridge Hospital during the two year period. In 1991,129 hospitalizations occurred and in 1992,139. Of the 268 hospitalizations, 214 (80%)were among Travis County residents and 54 (20\%)were residents of other counties. Analyses performed on the data pertaining to Travis County residents follow. Information on non-Travis County residents are not presented.

One hundred and seven Travis County residents were hospitalized for firearm-related injuries each year. Figure 2 illustrates the monthly distribution of firearmrelated hospitalizations. November had the fewest admissions (11) and September the most (25). On average, nine residents were admitted each month.

Demographic information for the 214 Travis County residents hospitalized for firearmrelated injuries is found in Table 2. One hundred and ten (52%) hospitalizations were among those residents aged 15-24 years.

One out of every eight individuals hospitalized (13%) was less then 17 years of age. One hundred eighty-six (87\%)were males. Ninety-nine (46%) of the residents were African-Americans.

Travis County residents had a hospitalization rate of 18 admissions per 100,000 population. Males were 6.7 times more likely to be hospitalized than females. Those aged 15-19 years had the highest admission rates (64.9 per 100,000 .population). African-Americans had a 3.4 higher admission rate than Hispanics and 11.5 higher rate than whites. The highest hospitalization rate occurred among African-American males, 15-19 years (472 per 100,000 population).

Figure 3 illustrates the day of the week of admission for the 214 hospitalizations. One hundred and nineteen (56%)were admitted on Friday, Saturday, or Sunday.

Figure 2. Hospitalizations by Month: Travis County Residents, 1991-1992

Figure 4 illustrates the length of hospital stay of 214 Travis County residents admitted for fire-arm-related injuries. Firearm-relatedinjuries
accounted for 1,230 hospitalization days. The mean length of hospital stay was six days (range $1-33$ days). All of the 14 residents that stayed for less than one day died. Eighty-eight patients (41%) required care in the Intensive Care Unit (ICU).
Firearm-relatedinjuries accounted for 255 ICU days.

Of the 214 Travis County residents hospitalized, 189 (88%)recovered and were discharged. Twenty-five patients (12%)died.

Law Enforcement Data.

Police reports were linked with 202 (75\%) of the overall 268 hospitalizations for firearm-related injuries. Law enforcementinformation was found for 188 (88\%) of the 214 Travis County residents hospitalized for gunshot wounds.

Table 2. Demographic Data for 214 Persons Hospitalized for Treatment of Firearm Injuries: Travis County Residents, 1991-1992

	Rate per
	100,000
Number Percentage	Population

Gender

Male
Female
Age (Years)
5-9
10-14
15-19
20-24
25-29
30-34
35-39
40-44
45-49
50-54
55+
Race/Ethnicity
African-American
Hispanic
White (non-Hispanic)
Unknown

99
59
54
87
13
31.7

186
28
2
7
53
57
28
26

$$
21.5
$$

17
11
6
5
2
46
28
25
1
4.7
2.4
9.6
64.9
41.9

$$
21.2
$$

$$
16.3
$$

12.7
9.9
11.4
5.4
78.6
22.9
6.8

As Figure 5 illustrates, the type of weapon used most frequently in Travis County shootings was a handgun. Of the 169 cases in which the weapon type was known, 147 (87\%)involved a handgun. The four most prevalent caliber types for these handguns were: 9 millimeter, 22 caliber, 25 caliber, and 38 caliber.

The geographic occurrence of the shooting was documented on 187 of the 188 police reports. Ninetynine victims (53%)were shot in one concentrated area of East Austin.

Figure 4. Length of Hospital Stay: Travis County Residents, 1991-1992

and two (86%)residents were shot by an acquaintance, spouse/lover, or other family member. In 17 (14%)f the assualts, the victims did not know their assailants.

Twenty ($\mathbf{1 1 \%} \%$ police reports of the 188 hospitalized Travis County residents revealed that an additional 51 individuals also sustained gunshot wounds in those shootings but were not admitted to Brackenridge Hospital.

Medical Care Charges. Medical charges (excludingphysician

Figure 6 illustrates firearm-related injuries by intent. Of the 184 cases in which intentionality could be determined, 150 (82%) involved assaults, 17 (9%)were suicide attempts, 16 (9\%) were unintentional discharges, and one (1%) was related to a legal intervention. (The total of these percentages is greater than 100% due to rounding)

Victim-offenderrelationship was known for 119 (79%) of the 150 assault-related shootings and is illustrated in Figure 7. One hundred

Figure 5. Type of Weapon: Travis County Residents, 1991-1992

Figure 6. Gunshots by Intent: Travis County Residents, 1991-1992

fees) for the 214 Travis County residents hospitalized for firearm-related injuries totalled $\$ 2,202,894$. With charges per hospitalization ranging up to $\$ 65,933$, the average was $\$ 10,294$ and the median, $\$ 6,200$. Eighty-two percent $(\$ 1,803,465)$ of these medical charges were uncompensated or paid for with public funds.

Injury Prevention and Control Program (512) 458-7266

Figure 7. Victim/Offender Relationship: Travis County Residents, 1991-1992

$N=119$

Haemophilus influenzae type \boldsymbol{b} Infections (Invasive)

In 1993, 51 invasive Haemophilus influenzae type b infections were reported to the Texas Department of Health. Although this number was slightly higher than the 42 cases reported in 1992, the number of invasive H. influenzae infections in children under five years of age continued to decline in 1993; only 15 cases were reported - a 48% reduction from the 29 cases reported in this age group in 1992. Even more remarkable was that only one death from any type of H. influenzae infection was reported in 1993, a 75-year-old man from whom H. influenzae type c was identified in a blood specimen.

Widespread and increasing use of vaccines to protectinfants and children from H . influenzae type b (Hib)infections has resulted in one of the greatest vaccine success stories in recent years. Prior to licensure of the first Hib Figure 1. Reported H. influenzae infections in Children vaccines in 1985, Texas experienced up to 600 cases of the disease in preschoolers each year. Since then, morbidity has declined dramatically as illustrated in Figure 1.

The clinical presentations of the invasive H. influenzae infection reported in children under five years of age included septicemia (9), meningitis (5), and cellulitis (1). Specific laboratory information rarely is provided with initial disease reports, and, in
fact, lab results were reported on only four of the infections in children under five. Two cases of septicemia were confirmed as H. influenzae type b, and one case of meningitis was caused by H. influenzae type d. A non-typeable strain of H. influenzae was identified in the blood of a child with septicemia.

Only one possible vaccine failure was reported in 1993. An infant with Down's syndrome received three doses of the Hib vaccine at two, four, and seven months of age. Twenty-five days after the third dose was administered this child became ill; he was admitted to the hospital three days later. H. influenzae type b was identified in a blood specimen.

Immunization Division (512) 458-7284

 <5 Years of Age: Texas, 1985-1993

Hantavirus Pulmonary Syndrome

In June 1993 a newly recognized hantavirus was identified as the etiology of an outbreak of severe respiratory illnesses occurring in the southwestern United States. Since this outbreak was recognized, sporadic cases have been identified throughout the United States, including Texas. The disease, called hantavirus pulmonary syndrome (HPS), is characterized by a prodrome consisting of fever, myalgia, and variable respiratory symptoms followed by the abrupt onset of acute respiratory distress. Among 17 case-patients studied in the southwest, hemoconcentrationwas noted on admission in 13 (76\%)and thrombocytopenia in 12 (71\%). In all case-patients reviewed, bilateral pulmonary infiltrates developed within two days of hospitalization. Postmortem examination routinely revealed serous pleural effusions and heavy edematous lungs. The hospital course was characterized by fever, hypoxia, and hypotension; recovery in survivors has been without sequelae. The mortality rate in the United States for 1993 was 43%.

One case of hantavirus pulmonary syndrome occurred in Texas in 1993. The patient was a 58-year-old white female from Angelina County. On June 9 she had an acute onset of fever, chills, myalgias, generalized edema, and progressive shortness of breath over a five-day period. Five days after onset of her illness, she was admitted to a local hospital with a diagnosis of bilateral interstitial pneumonia. On admission she had a temperature of $102.3^{\circ} \mathrm{F}$, a respiratory rate of 26 , a heart rate of 96, and a blood pressure of 142/ $80 \mathrm{~mm} / \mathrm{Hg}$. Her physical exam was unremarkable except for pedal edema and crepitation at
the lung bases. Her chest x-ray revealed bilateral diffuse interstitial infiltrates which progressed during the patient's hospitalization to include foci of alveolar consolidation. An echocardiogram was normal. All bacterial, fungal, and mycobacterial stains and all sputum and blood cultures were sterile. Two days after admission, rare small petechiae were noted on the patient's flanks. A blood specimen for hantavirus antibody testing was submitted. The serum had an isolated Seoul IgM antibody titer of $1: 1600$ by ELISA with no detectable antibodies by fluorescence.

Despite broad spectrum antibiotic therapy and a nondiagnostic endobronchial biopsy, the patient had progressive unexplained respiratory failure or Adult Respiratory Disease Syndrome (ARDS), requiring intubation. She died nine days after admission to the hospital.

The Texas Department of Health (TDH) Zoonosis Control Rapid Response Team traps rodents in communities where a case of hantavirus has been identified. None of the rodents trapped at 60 different sites in Angelina County were positive for hantavirus infection.

The TDH Laboratory provides hantavirus antibody testing for individuals with unexplained ARDS. Sera from 83 patients were tested for hantavirus infection in 1993; only the one patient was identified.

Infectious Disease Epidemiology and Suweillance Division (512) 458-7328,458-7676

Hazardous Substances Emergency Events Surveillance in Texas

In October 1992 the Texas Department of Health (TDH) received a three-year Cooperative Agreement Award from the Agency for Toxic Substances and Disease Registry (ATSDR) to participate in the Hazardous Substances Emergency Event Surveillance (HSEES) program with eleven other states. TDH collected the first full year of HSEES data in 1993. These data included time, place, responsible party, chemicals spilled or released, and resulting health consequences including injuries, deaths, and evacuations. Population density estimates also were collected. to identify the number of individuals potentially at risk for each event.

The Hazardous Substances Emergency Events Surveillance Revised Protocol of June 1992 defines the criteria for inclusion of an event in this study as follows:

- The event is an uncontrolled or illegal release or threatened release of one or more hazardous substances; and
- The substances that are actually released include all hazardous substances except petroleum products; and
- The quantity of hazardous substances which are released, or are threatened to be released, need or would need to be removed, cleaned up, or neutralized according to federal, state, or local law; or
- There is only a threatened release of hazardous substances, but this threat leads to an action (e.g., an evacuation) that can potentially impact the health of employees, responders, or the general public. This action makes the event eligible for inclusion into the surveillance system even though the hazardous substances are not released.

The goal of this surveillance project is to reduce the morbidity and mortality resulting from hazardous substances emergencies. In support of the sole focus on emergency events, only

Figure 1. Frequency of Spill Occurrence by County: Texas HSEES, 1993

acute health effects were included in the data. This surveillance effort does not address longterm environmental or health effects.

In 1993 the Texas HSEES Project investigated 1,259 hazardous substances incidents which met the project case definition. These reported incihents occurred in 99 of the state's 254 counties; $\mathbf{8 3 \%}$ of the state's residents live in those counties. Figure 1 shows the geographic distribution of these spills. Seventy-nine counties had ten or fewer chemical spills, and many of these had only one or two spills. Sixteen counties had from 10 to 50 spills. Four counties had more than 50 reported chemical spills; these were Harris (367), Nueces (180), Galveston (122), and Brazoria (60). Table 1 presents a comparison of the ten counties with the highest absolute spill count and the highest rate of spills (i.e. spills per 100,000 population). Nueces, Galveston, Calhoun, and Hutchinson counties are included on both lists. Although rate of spills per 100,000 populationis only a weak indicator of potential health consequences, the higher spill rates per 100,000 most likely will

Table 1. Comparison of the Ten Counties with Highest Chemical Spill Frequency - by Absolute Count and Spills Per 100,000 Population: Texas HSEIS, 1993.

By Count		By Spills $/ 100,000$		
1. Harris	367		1. Calhoun	247
2. Nueces	180		2. Hutchinson	183
3. Galveston	122		3. Kent	99
4. Brazoria	60		4. Nueces	62
5. Calhoun	47		5. Chambers	60
6. Hutchinson	47		6. Galveston	56
7. Jefferson	47		7. Dallam	55
8. Tarrant	36		8. Throckmorton	53
9. Dallas	34	9. Matagorda	51	
10. El Paso	--	10. Gray	50	

potential victims, emergency medical staff, fire fighters, HazMat team members, and for Local Emergency Planning Committees (LEPC's).

Of the 1,259 HSEES cases investigated, 65 events (5%)resulted in 715 injuries and five deaths. Trauma was a significant contributor in four of those five deaths. All fatalities were male. Industrial chemicals and fixed facilities generate the majority of the HSEES spill reports. However, incidents in agricultural settings accounted for three of the five deaths in the study (Table3).
result in higher per capita costs for emergency services provided by hospitals, EMS, police, fire, and HazMat teams.

Excluding petroleum products, an estimated 65,000 chemicals in the marketplace are considered hazardous substances. The HSEES project implicated a much smaller list, consisting primarily of major chemical commodities produced in the United States (Table 2). Although the initial purpose of the 1993 Texas HSEES project was to monitor hazardous substances besides chemicals, over 99% of the events investigated involved hazardous chemicals. Less than one percent of the events were associated with radiological, medical, or biological materials.

The number of chemicals involved in each spill incidentimpacts the complexity of cleanup operations, increases the risks of exposures, and increases the range of capabilities required from first responders and their personal protective equipment. Data for 1993 indicate that 86% of HSEES events involved only one chemical and eight percent involved two chemicals. Ninety-nine percent of HSEES events involved four or fewer chemicals, and no events involved more than eight chemicals. This low frequency of multiple chemical events bodes well for

In 95% of the HSEES events resulting in injuries, an average of four people were injured in each incident. However, the remainingfive percent of events resulted in injury of 98,128 , and 251 people. Even though these three events caused a large number of injuries, no deaths occurred.
Table 2. The Most Frequently Spilled or Released
Chemicals: Texas HSEES, 1993

Rank	Chemical	Frequency ${ }^{\prime}$
1.	Benzene	6%
2.	Sulfuric Acid	5%
3.	Ammonia	4%
4.	Polychlorinated Biphenyls	4%
5.	$1,3-B u t a d i e n e$	3%
6.	Formaldehyde	3%
7.	Methanol	3%
8.	Sodium Hydroxide	3%
9.	Ethylene Glycol	3%
10.	Hexane	3%
11.	Sulfur Dioxide	3%
12.	1,2 -Dichloroethane	2%
13.	Hydrogen Sulfide	2%
14.	Chlorine	1%

- Percent of Texas 1 \#\# (1993) surveillancecases whichincluded this chemical.

The HSEES project monitors injuries and deaths in three population groups: employees, first responders, and the general public. In 1993 four employees and one member of the general public died in HSEES events. There were numerous injuries in each group: employees
(105), first responders (27), and the general public (569). An additional fourteen injured people were not categorized. Not only were more members of the general public injured, but they also suffered a wider range of injuries than either employees or first responders. The frequency of various injuries varied greatly between the three groups. This variation was most likely due to the level of risk, as determined by event proximity, knowledge, personal protective equipment (PPE), and prior chemical experience (Figure 2). Noteworthy is the low incidence of respiratory irritation and chemical burns among first responders relative to that of employees and the general public. These lower rates for first responders may be attributed to better knowledge, training, and use of personal protective equipment. Since nearly all of the general public's 72 chemical burn victims were injured in one HSEES incident, this proportion of injuries caused by chemical burns is not likely to occur again.

Figure 2. Frequency of Key Injuries by Victim Category: Texas HSEES, 1993

The HSEES study tabulated eleven categories of injuries: trauma, respiratory irritation, eye irritation, nausea/vomiting, heat stress, chemical burns, thermal burns, skin irritation, dizziness/CNS, headache, and "other". Heat stress and thermal burns were rare; each were reported only once during the 1993 study. Two major spill events resulted in 56 "other" types of injuries. In the largest single event, 251

Table 3. Features and Characteristics Associated with Five Deaths: Texas HSEES, 1993.

Victim/Activity	Location	Actions	Outcome
40-year-oldmale Contract Welder	Industrial, Hams County, Chemical TankStorage	Weidedontank of unknown contents; containedhydrogen sulfide ($\mathrm{H}_{2} \mathrm{~S}$) a decomposition product of sodium sulfides.	Explosion andimmediatedeath by trauma for welder. Severe chemicalburns forco-worker.
17-year-oldmale Driver (with. 135% bloodalcohol lleve!	Agticultural,日 Paso County, Feed Lot	Droveinto liquifiedammonia (NH) tanks.	Severetrauma andchemical burns. NH_{3} leaks greatly delayed patienttransporttomedical facility. Died2days later. One responderinjured. Tenpeople evacuated.
53-year-oldmale Employee	Industrial,JeffersonCounty, PetrochemicalRefinery	Whileon cat-walk, overcomeby leakinghydrogensulfide ($\left.\mathrm{H}_{2} \mathrm{~S}\right)$.	Chemicalasphyxiation, immediate death.
47-year-oldmale Pilot,Crop Duster	Agiicultural. NuecesCounty	Planecrashed while loaded with pesticide(Guthion).	Trauma, deathat scene of accident.
46-year-oldmale Pilot, Crop Duster	Agricultural, Hall County, CottonGin	Planeloaded withParaquat crashedduring take-off.	Drovehimself to hospital. 2° and 3° chemicaland thermalburns over 70% of body and lungs. Severe vomiting. Died 8 days later.

people were injured in Mt. Pleasant, Texas, when they drank water contaminated with sodium hydroxide. Of all injuries incurred in this incident, 32 types were recorded as "other" and included sore throat, diarrhea, and GI pain. The second event involved illegal recycling and dumping of metallic mercury in Odessa, Texas, and resulted in 24 "other" types of injuries caused by mercury exposures.

Approximately seven percent of the 1993 Texas HSEES events resulted in 82 evacuations, requiring the displacement of 9,216 people from their jobs, homes, and schools. The median number of people evacuated during an event was 15 , while the average number evacuated was 196. (A few evacuation incidents with over 1000 evacuees skewed the average to higher levels.) The time length of evacuations averaged 15 hours, with a median time of two hours and a maximum of 30 days.

Transportation events were eight percent of the total 1993 Texas HSEES events, but accounted for disproportionately higher levels of injury, death, and evacuations. Thirty-three percent of transportation event victims received injuries which resulted in death or required hospitalization, while only 3% of the victims from fixed facility events suffered injuries of equal severity. HSEES events occurring during chemical transportation were more than twice as likely to require evacuation as events occurring at fixed facilities (14% vs 5.7%). The median number of people evacuated from a transportation event was 75 , while the median number of evacuees from a fixed facility event was 15 . Chemical
transportation has moved hazardous materials away from trained and skilled workers into the domain of the more vulnerable general public.

The goal of the Texas HSEES project is to reduce the morbidity and mortality resultingfrom hazardous substance emergencies. The project team disseminates results to parties whose interest and actions will contribute to those reductions. Organizations receiving the HSEES results have included state agenciesfor rulemaking and possible legislation, responsible parties, LEPCs for planning, and numerous first responders. Texas HSEES presentations at the Department of PublicSafety, Emergency Management Conference were well received by EMS, fire department, and HazMat staff. By directing education, community planning, funding, and enforcement efforts towards areas of higher health risks - the goals of reduced morbidity and mortality can be met.

The Texas HSEES project thanks the Texas Natural Resources Conservation Commission Emergency Response Team staff and regional operations stags for providing the project's primary notification for chemical/hazardous material spills and releases. Without their support and cooperation, the Texas HSEES projectcould not function.

Reference:
Hazardous Substances Emergency Events Surveillance Revised Protocol, June, 1993. Division of Public Health Studies, Agency for Toxic Substances and Disease Registry.

Non-Communicable Disease Epidemiology and
Toxicology Division (512) 458-7222,458-7269

Health Risk Assessment of Toxic Substances

The Health Risk Assessment and Toxicology Program (HRAT) is part of the Division of Noncommunicable Disease Epidemiology and Toxicology at the Texas Department of Health (TDH). In accordance with a cooperative agreement between TDH and the federal Agency for Toxic Substances and Disease Registry (ATSDR), the HRAT conducts public health assessments to determine the potential public health impact of hazardous waste sites and other environmentalhazards in Texas. These sites include those listed on the U.S. Environmental Protection Agency (EPA) National Priorities List (NPL) of hazardous waste sites and those listed by the Texas Natural Resource Conservation Commission (TNRCC) on the State Superfund List. HRAT also evaluates environmental data to provide health-based consultationsfor citizens and other state agencies, and provides expert witness services for the Attorney General's Office when required.

A public health assessment (PHA)is the evaluation of data and information on hazardous substances in the environment to determine their past, present, and future impact on public health. Every PHA reviews site-specificinformation, evaluates public health implications, responds to community health concerns, and makes recommendationsfor follow-up health activities as well as actions to reduce any health threat posed by the site. HRAT staff may revisit a site to complete a site review and update (SRU) when new environmental data become available at sites for which PHAs previously have been conducted. When citizens or state agencies request information or pose specific questions about a particular chemical or site, the Program completes a Health Consultation. Documents submitted to ATSDR for publication undergo a rigorous review and revision process prior to final publication.

The following summary includes work performed by the Health Risk Assessment and Toxicology Program during the 1993 calendar year. Figure 1 indicates general locations for sites evaluated during the same time period.

Alamodome - San Antonio, Bexar County

Consulted with the Texas Natural Resource Conservation Commission (TNRCC) and the City of San Antonio regarding the public health significance of soil contaminated with lead and other wastes used as fill at this site.

Atochem ${ }^{-}$Bryan, Brazos County

Performed an initial public interest survey regarding a health study; major contaminantis arsenic. Analyses of the public interest survey for this site indicated that out of the 17% of the residents responding to the survey (115 of 668), $\mathbf{3 7 \%}$ (42) indicated they would not be willing to participate in a health study. TDH determined that response to the survey was not sufficient to complete a public health study.

Aztec Mercury - Alvin, Brazoria County
Performed a health consultation regarding the Remedial Investigation Reportfor TNRCC, September 1,1993.

Bestplate, Inc. - Dallas, Dallas County

Completed a health consultation for this site and forwarded it to the TNRCC for their review and comment, August 25,1993 . Contaminants of concern are nickel and ehromium.

Brio NPL Site - Friendswood, Harris County
Performed a health consultationfor the TDH, ShellfishSanitation Division pertaining to volatile organic compounds detected in fish tissue. Provided county health departments with information allowing them to remove a ban on contact recreation for Clear Creek.

Corpus Christi Refineries - Corpus Christi, Nueces County

Began collecting citizen concerns and environmental data associated with these refineries, summer 1993. Participated in developing a public interest survey questionnaire to be sent to residents around this site; major contaminants are petroleum, hydrocarbons, and benzene.

Crystal City Airport NPL Site - Houston, Harris County

Submitted draft site review and update to ATSDR, February 1,1993.

Donna Reservoir - Hidalgo County

Found that fish sampled in the area contained excessive PCB concentrations. After completing an evaluation of contaminant concentrations related to health comparison values, TDH issued a fish consumptionadvisory that strongly discouraged consumption of any fish caught at the Donna reservoir, Arroyo Colorado, and all irrigation canals in Hidalgo County.

Fabsteel, Waskom - Harrison County
Responded to the Texas Office of the Attorney General regarding a scientific peer review of the health assessment for this site. A TDH employee served as an expert witness for the State during a subsequent court hearing. The amount awarded to the State for damages was $\$ 800,000.00$.

Fort Bend County Municipal Landfill-Rosenberg, Fort Bend County
Investigated concerns associated with this municipal landfill.
French Limited NPL Site - Crosby, Harris County
Submitted revision for blue cover (final) publication to ATSDR January 8,1993. Contaminants of concern are vinyl chloride and polychlorinated biphenyls (PCBs).

Frisco (City of) - Collin County

Prepared interagency memorandum on September 7,1993 regarding a TNRCC proposed "health effects study" for lead contamination.

Geneva Industries NPL Site - Houston, Harris County
Submitted a revision to ATSDR for blue cover (final) publication, January 5,1993. No comments were received during the public comment period.

Gibraltar Chemical - Winona, Smith County
Investigated concerns associated with hazardous waste injection well (waste mixing and waste storage) at citizens' request; visited with concerned citizens in August 1993.

Highland Acid Pits NPL Site - Highlands, Harris County
Submitted SRU to ATSDR, April 20,1993. Submitted revised final SRU, August 6,1993.

Hi Yield - Commerce, Hunt County
Performed a PHA; major contaminant is arsenic. Commented on action levels for the pesticides found in sample results from waste piles associated with the Hi-Yield site for the TNRCC. Attended public meetings on April 22 and August 26,1993.

Houston Scrap - Houston, Harris County
Prepared a PHA for this site and forwarded it to the TNRCC for their review; major contaminants are lead and PCBs.

Milby Street Site - Houston, Harris County
Reviewed TNRCC's proposed Corrective Action Plan. Major contaminants are lead and total petroleum hydrocarbons.

Mount Carmel Complex (Branch Davidian) - Waco, McLennan County
Attended an interagency meeting with Texas Air Control Board, Texas Water Commission, Texas
Attorney General's Office, and law enforcement officials to discuss possible options for restricting entry onto site by public, May 17,1993 . Completed a public health consultation and TDH issued a Quarantine Order restrictingentry.

Niagara Chemical - Harlingen, Cameron County
Reviewed TNRCC risk assessment for this site.

North Cavalcade Street NPL site - Houston, Harris County
Submitted a health consultation to address controls and respond to community health concerns, September 24,1993.

Odessa Chromium II NPL site - Odessa, Ector County
Prepared a health consultation to address use of contaminated groundwater in evaporative coolers and for irrigation of home gardens, September 14,1993.

Old Brazos Forge Facility - Brenham, Washington County
Performed health consultationfor TNRCC regarding residential property in the vicinity of the Old Brazos Forge site; major contaminant is chromium in drinking water.

Pesses Chemical NPL Site - Fort Worth, Tarrant County
Submitted draftSRU to ATSDR, June 9,1993. Contaminants of concern were cadmium, lead, copper, and nickel contaminationin soil.

Petro Chemical Systems NPL Site - Liberty County
Submitted revised health assessment to ATSDR for blue cover (final) publication, February 11, 1993.

Sheridan Disposal Services NPL Site - Hempstead, Waller County
Submitted draft SRU to ATSDR, June 21,1993. Contaminants include volatile organic compounds (VOCs) and polychlorinated biphenyls (PCBs). Responded to EPA comments on this SRU on December 14,1993.

Sikes Disposal Pits NPL Site - Crosby, Harris County

Submitted PHA action plan to assess lead in neighborhood water wells, September 30, 1993. HRAT staff conducted a follow-up action to collect drinking water samples for lead analysis from residential wells and associated home plumbing, December 21,1993. Samples were submitted to the TDH laboratory for analyses.

Sol Lynn NPL Site - Houston, Harris County

Submitted draft SRU to ATSDR, July 23,1993. Responded to EPA comments on November 3,1993.
South Cavalcade NPL site
This SRU was revised to include agency comments and forwarded to ATSDR on December 30, 1993.

Texarkana Wood Preserving Company NPL Site - Texarkana, Bowie County
Submitted draftSRU to ATSDR, August 24,1993.
Thistle Creek - Cibolo, Guadalupe County
Completed a health consultation to address public health concerns regarding a local landfill in response to a citizen's request.

Triangle Chemical Company NPL Site - Bridge City, Orange County

Submitted draftSRU to ATSDR, September 24,1993. Chemicals of concern include VOCs.

United Creosoting NPL Site - Conroe, Montgomery County

Forwarded a blue cover (final) copy of this health assessment addendum to the local repository for records concerning this site.

Non-Communicable Disease Epidemiology and Toxicology Division (512) 458-7269,458-7222

Figure 1. Health Risk Assessment Activity Locations, 1993

1. Alamodome San Antonio, Bexar
2. Atochem Bryan, Brazos
3. Aztec Mercury

Alvin, Brazoria
4. Bestplate Hutchins, Dallas
*5. Brio
Friendswood, Hamis
6. Corpus Christi, Refineries Corpus Christi, Nueces
*7. Crystal City Airport NR Crystal City, Zavala
8. Donna Reservoir Hidalgo County
9. Fabsteel

Waskom, Hanison
10. Fort Bend Co. Landfill Rosenberg, Fort Bend
*11. French Limited Houston, Hams
12. Frisco (City of) Frisco, Collin

*13. Geneva Industries Houston, Hanis
14. Gibraltar Chemical Winona, Smith
*15. Highlands Acid Pits Houston, Haris
16. Hi-Yield

Commerce, Hunt
17. Houston Scrap

Houston, Hanis
18. Milby Street

Houston, Haris
19. Mount Carmel Complex
(Branch Davidian)
Waco, McLennan
20. Niagara Chemical

Harlingen, Cameron

*21. North Calvacade Street Houston, Haris

*22. Odessa Chromium II Odessa, Ector
23. Old Brazos Forge Facility Brenham, Washington
*24. Pesses Chemical Fort .Worth, Tarrant
*25. Petro Chemical Systems 'Lubbock, Liberty
*26. Sheridan Disposal Services Hempstead, Waller
*27. Sikes Disposal Services Crosby, Haris
*28. Sol Lynn
Houston, Harris
*29. South Calvacade Houston, Harnis
*30. Texarkana Wood Preserving Co. Texarkana, Bowie
31. Thistle Creek

Cibolo, Guadalupe
*32. Triangle Chemical Bridge City, Orange
*33. United Creosoting Conroe, Montgomery
*National Priorities Listing Sites

Hepatitis, Viral

Viral hepatitis is a collective term used to denote any of several viral diseases whose target organ is the liver. The major viruses in this category are hepatitis A virus (HAV), hepatitis B virus (HBV), hepatitis C virus (HCV), hepatitis D virus (HDV, also referred to as Delta agent), and hepatitisE virus (HEV). Of these five viruses, HAV, HBV, and HCV account for the majority of the reported hepatitis in Texas. Hepatitis D is reported infrequently, with cases identified generally from our major metropolitan areas. Nationwide, indigenous cases of hepatitis E have yet to be reported, although epiderniologists in the local health departments along the Texas-Mexico border are aware of the possibility that sporadic cases of this enteric infection may occur in their communities.

In 1993, 4,722 cases of viral hepatitis were reported in Texas. This figure represents an increase of 23.2% from the previous year's total of 3,833 cases. As with previous years, the 1993 total includes cases reported for each of the four virus types present in this country (A through D) as well as those reported as "hepatitis non-A, non-B" (NANB) and "hepatitis, type unspecified." The latter denotes a category established to accommodate the reporting of cases identified primarily on a clinical basis. Accounting for 87.9% of the viral hepatitis cases reported in the state, hepatitis A and B remain the principle types of hepatitis. For every ten cases of viral hepatitis infection reported to TDH, six were hepatitis A. The numbers of cases and corresponding incidence rates for individual counties are provided in the Regional Statistical Summary Section.

Hepatitis A

Hepatitis A, one of the most frequently reported diseases in Texas, is an acute,
Table 1. The Incidence and Demographics of
Hepatitis A in Texas, 1992 and 1993. Hepatitis A in Texas, 1992 and 1993.

	1993	1992
Case Total	2798	1828
Counties Reporting Incidence Rate (per 100,000 population)	111	106
By Race/Ethnicity:	15.6	10.4
\quad White	8.3	5.6
\quad Hispanic	30.8	20.4
\quad African-American	6.0	4.0
Male/Female Ratio	$1: 1$	$1: 1$
Deaths	1	3
Case/Fatality Ratio	0.04%	0.2%

self-limiting viral infection of the liver acquired via an enteric mode of transmission. Signs and symptoms, when present, may include vomiting, diarrhea, malaise, right upper quadrant discomfort, loss of appetite, dark urine, and jaundice. Immunity following HAV infection is usually complete, thereby preventing reinfections. The level of susceptibility to HAV infection within a population is greatest during childhood; the percentage of susceptible Persons drops with age. The number of susceptible persons is extremely difficult to gauge with

Figure 1. Incidence Rate per 100,000 of Hepatitis A: Texas, 1993

accuracy. The annual incidence rates for this disease and for the other types of viral hepatitis are considered crude rates in that the denominator represents the total population rather than the total population minus those persons who are immune (or chronic carriers, as with hepatitis B and hepatitis C).

The demographic patterns of disease incidence for hepatitis A have remained remarkably consistent over recent years (Figures 2 and 3). As in previous years, morbidity is concentrated disproportionatelyin the Hispanic population, and in 1993 accounted for slightly more than half (53.6%) of cases reported statewide. One in every three cases was reported among whites and only 4.4% of the
cases were reported in AfricanAmericans. Although males and females generally were affected equally, attack rates differed with respect to age groups and race/ ethnicity. Among whites, 53.7% of cases were reported in persons between the ages of 20 and 40 . In contrast, only 21.2% of the cases among Hispanics were adults in that same age range.

As in previous years, the group with the highest attack rate for hepatitis A was Hispanic children. Almost one-fifth (18.4\%)of all

Since HAV is an enteric virus concentrated in stool, infection is acquired when a person ingests fecally-contaminated food or beverages or places fecally-contaminated objects (e.g., fingers, cigarettes) in the mouth. Person-toperson spread is relatively common in families

- M $\square F$

Figure 2. Reported Cases of Hepatitis A per 100,000 Population by Race/Ethnicity and Sex: Texas, 1993 cases were Hispanic children five to nine years of age, and 38.7% of the cases in Texas were diagnosed in a Hispanic person under the age of 20 years. This trend in hepatitis A morbidity suggests that Hispanics tend to acquire infection early in life. In comparison, the incidence
and day-care centers. Good personal hygiene, with an emphasis on handwashing, is the key to prevention.

In 1993 there were 2,798 cases of hepatitis A reported from 111 counties, representing a 78.3% increase over the case total of 1,828 in 1992 (Table 1). Incidence rates by county are presented in Figure 1. Over 99\% of hepatitis A cases reported were diagnosed serologically. There was only one death; the immediate cause of death was listed as fulminant hepatitis.

Figure 3. Reported Cases of Hepatitis A per 100,000 Population by Age Group: Texas, 1993

of disease in whites is often delayed until young adulthood. Differences in socioeconomic settings, association with groups of children, and quality of environmental health are all important factors in the spread of hepatitis A.

Of the three major types of viral hepatitis, hepatitis A is the one most associated with outbreaks. Spread of infection via fecallycontaminated food is a typical example of a "point source" outbreak. Where the transmission of foodborne hepatitis A in group settings is concerned, there are two possible outcomes. In the first situation, infected foodhandlers are diagnosed shortly after onset of symptoms, and prevention measures are implemented rapidly to curtail further spread of hepatitis A infection to coworkers and patrons. In 1993 this scenario occurred in a San Antonio restaurant that provided a high volume of service on a weekly basis. Serum samples from two foodhandlers, both contacts of another infected foodhandler one month prior, were serologically confirmed for acute hepatitis A. The San Antonio Metropolitan Health District arranged for patrons and restaurant workers to receive immune globulin (IG). Approximately 2,500 doses of IG were given at the restaurant's expense. Despite their efforts to minimize the impact of this potential outbreak, the restaurant lost about half of its business in the weeks that followed. However, the restaurant has since recovered from this incident.

The second possible outcome occurs when infected foodhandlers do not get diagnosed or somehow fail to come to the attention of public health personnel in a timely manner, and an outbreak of hepatitis A develops in coworkers and patrons. A situation of this nature occurred in the fall of 1993 in central Bowie County. A foodhandler had onset of hepatitis A shortly before the Labor Day weekend and, despite having seen a physician about this illness, continued to work at two restaurants in the county. Within three weeks additional cases of hepatitis A were reported in which the individuals had eaten at one or the other establishment. To determine the prevalence of acute
hepatitis A among foodhandlers in the area, the Bowie County Health Department conducted a serologic survey of 128 foodhandlers from various restaurants. Of these workers, 33 (25.8%)showed evidence of hepatitis A antibody, but only two (the index foodhandler and a foodhandler from another restaurant who had onset of symptoms during the outbreak) showed evidence of recent acute infection. By late October some 20 cases had been linked to this outbreak. Since the index case was not reported in a timely manner, this outbreak was able to spread to patrons/consumers, thus serving as a reminder that illness in foodhandlersshould always be a matter of public health concern.

The community-wide outbreak, compared with the point-source clusters of hepatitis A infections, remains the most difficult to detect and control. Those factors which contribute to the difficulties encountered in managing this type of outbreak include the following

- insidious beginnings with asymptomatic or subclinicalcases;
- person-to-person spread through several cycles or waves of infection;
- transmission among families, friends, neighbors, and especially extended families;
- high attack rates in children under the age of 15 , with the majority of symptomatic; illness occurring in children ages five to nine; and
+ asymptomatic, subclinical, or unreported cases that perpetuate the outbreak by shifting the course of the outbreak from a central focus (or foci) to the more diffuse person-to-personmeans of transmission.

The most notable community-wide outbreak in 1993 occurred in Nueces County (Figure 4). The outbreak probably started during the Fourth of July weekend; the first wave of cases was detected in August. At leastfour waves of cases occurred during 1993, as cases continued to be reported well into 1994. Since this outbreak occurred in the latter third of the year, its con-

Figure 4. Community-Wide Outbreak of Hepatitis A: Nueces County: Texas, 1993

the importance of good personal hygiene and sound environmental health may have faded from the forefront of attention as well.

Hepatitis, Type Unspecified

The number of cases of "hepatitis, type unspecified reported in Texas continues to drop; the 157 cases reported in 1993 reflected a 17.8% decrease from the 191 cases reported in 1992 (Table 2). The unspecified category is used mostly to report cases of hepatitis that are diagnosed clinically, without specific hepatitis serology. In 1993, 97% of these cases were reported on the basis of a clinical diagnosis alone. Almost half were reported from Houston and the Dallas/Fort Worth Metroplex.

The incidence patterns of unspecified hepatitis resemble those of hepatitis A (Figures5 and 6). As with hepatitis A, most cases occur in Hispanics, and attack rates are highest among the
tinuation may have been sustained by the group events, festivities, and food functions associated with the holidays. Of the cases that were identified in 1993, approximately 50% occurred in children under the age of 15 ; one of every five cases occurred in a child between the ages of 10 and 14 years. Transmission among family members accounted for at least 16% of the cases. There were 94 cases of hepatitis A reported in the 1993 portion of this com-munity-wide outbreak. Compared with the county case total of 10 cases in 1992, this outbreak total represents an 840\% increase in hepatitis A incidence for this area.

The number of cases and incidence rates by county are provided in the Regional Statistical Summaries Section of this report. In 1992 there was a sharp decrease in incidence rates in the border counties; in 1993 the incidence of hepatitis A rebounded to pre- 1992 levels in almost every county. This fluctuation probably reflects a temporary decline in hepatitis A incidence due to intensive health education campaigns promoting the prevention of enteric disease. These campaigns were conducted in response to the threat f cholera in the area. Once the threat disappeared, the message about

Table 2. The Incidence and Demographics of Hepatitis, Type Unspecified: Texas, 1993 and		
1992.		
Case Total	$\frac{1993}{157}$	1992
Counties Reporting	25	33
Incidence Rate (per 100,000 population)	0.9	1.1
By Race/Ethnicity:		
White	0.5	0.8
Hispanic	1.6	1.7
African-American	0.8	1.0
Male/Female Ratio	1:1.2	1.2:1
Deaths	4	3
Case/Fatality Ratio	2.5\%	1.6\%

children. The incidence rate for Hispanics in 1993 was 1.6 cases per 100,000 population, a rate which is double that for African-Americans and three times the rate among whites. More than one third (37.6%)f the cases occurred in children less than 15 years of age (Figure6). Of
those, Hispanic children sustained the highest attack rates. One of every four (26.1\%)unspecified hepatitis cases was in a Hispanic child under the age of ten. In whites, illness tended to occur in young adults, ages 20 to 44. Again, this incidence pattern is strikingly similar to that of hepatitis A , in which disease occurs early in life for Hispanics, but at a more advanced age for non-Hispanics. The nearly equal distribution of cases between males and females is also typical of that for hepatitis A.

Four deaths due to fulminant hepatitis of undetermined origin were reported in this category. Three of the four were females, ranging in age from 36 to 67 years.

Hepatitis B

Hepatitis B, the second major type of viral hepatitis, is clinically indistinguishablefrom hepatitis A. Hepatitis B virus (HBV) is found in the blood and certain body substances (e.g., semen, vaginal secretions, saliva) of infected persons. Transmission of the virus requires

Figure 6. Reported Cases of Unspecified Hepatitis per 100,000 Population by Age Group: Texas, 1993

Figure 5. Reported Cases of Unspecified Hepatitis per 100,000 Population by Race/Ethnicity and Sex: Texas, 1993

Figure.7. Incidence Rate per 100,000 of Hepatitis B: Texas, 1993

the pastfew years. The 1993 case total represents an 11.4% decrease in the number of cases compared with the 1,528 cases reported in 1992 (Table3). Figure 7 illustrates the incidence rates of hepatitis B by individual counties in Texas. More than 99% of the cases were reported on the basis of specific hepatitis B serology.

Since hepatitis B is a blood- and body fluid-borne infection spread primarily through the high-risk behaviors and practices of adults and adolescents, the distribution of cases by age, sex, and race/ ethnicity is very different from that of hepatitis A (Figures 7 and 8). For all three race/ethnic groups, hepatitis B occurs more frequently in males than in females. Generally, there are approximately three cases among males for every two cases in females. African-Americanshave the highest attack rates; the 1993 incidence rate of hepatitis B among African-Americans was more than twice that for either whites or Hispanics. In contrast to hepatitis A , where attack rates are highest among young children, hepatitis B occurs mainly in adolescents and adults. The age
group with the highest attack rate in each of the major race/ethnic groups, adults 20 to 29 years of age, accounted for approximately 31.8% of the cases. Many cases also occurred among adults 30 to 39 years of age. Overall, seven of every ten hepatitis B cases in Texas were adults aged 20 to 49 years old. The six deaths reported for hepatitis B in 1993 were evenly distributed among males and females. The ages of the deceased were clustered into two groups: those in their sixties at the time of their death and those in their thirties. Fulminant hepatitis typically is listed as the immediate cause of death in acute hepatitis cases.

Hepatitis D

Hepatitis D virus (HDV) infections occur only in persons with active hepatitis B infections in either the acute or chronic phase. The prognosis for HDV infections depends on the status of the HBV infection. Persons acutely co-infected with both viruses, even when such condition is severe, recover more frequently than do those persons with acute HDV infection superim-

Table 3. The Incidence and Demographics of Hepatitis B: Texas, 1993 and 1992.		
	1993	1992
Case Total	1354	1528
Counties Reporting	109	124
Incidence Rate	7.5	
By Race/Ethnicity:	7.5	8.7
White	5.1	6.4
Hispanic	5.0	6.1
African-American	11.0	11.9
Male/Female Ratio	1.4:1	1.5:1
Deaths	6	20
Case/Fatality Ratio		1.3\%

posed on a chronic HBV infection, a condition referred to as a superinfection. Although HDV infectionis closely associated with hepatitis B infection, HDV clearly belongs to a virus group distinct from that of HBV.

Hepatitis D is underreported because most clinicians do not routinely order specific serologic tests when evaluating their hepatitis B
patients. Hepatitis D, however, usually is suspected when the HBsAg-positive patient presents with unusually severe symptoms, very high transaminase levels in the liver function tests and a history of injection drug use and sharing of needles.

In 1993 only one case of hepatitis D was reported to TDH. The patient was an eight-year-old Hispanic girl from Odessa (Ector County). She survived her illness. Her onset of illness was in October 1993. Serologic test results for hepatitis B and hepatitis Dindicated recent acute infection by both HBV and HDV. Intrafamilial transmission of bloodborne infection was probably the route of transmissionsince the more typical risk factors were missing from the patient's history.

Figure 9. Reported Cases of Hepatitis B per 100,000 Population by Age Group: Texas, 1993
 Population by Age Group: Texas, 193

Figure 8. Reported Cases of Hepatitis B per 100,000 Population by Race/Ethnicity and Sex: Texas, 1993

Hepatitis C

Hepatitis C is the second major form of bloodborne viral hepatitis. This disease has been the predominantform of transfusiontransmitted hepatitis since the mid-1970s.

Symptoms are similar to, but less severe than, those of hepatitis A and B. Asymptomatic infections are common. Fifty to 70\% of acute infections become chronic and 20\%of chronically infected patients develop cirrhosis, a major cause of death in this country.
Currently, alpha-interferonis used to treat chronic liver disease due to HCV infection. A
laboratory test specific for hepatitis C antibody became

Since then, increasing numbers of liver disease patients have been screened to evaluate their candidacy for this intensive and costly form of treatment.

The serologic diagnosis of acute hepatitis C is difficult because the available laboratory test is incapable of distinguishing acute disease from chronic or previous infections. This problem makes surveillancefor acute hepatitis C labor-intensive and frustrating since communicable disease surveillance in Texas focuses on the incidence of acute infections. As many as 80% of reports of hepatitis C antibody-positive patients received by TDH in 1993 reflected nonreportablechronic conditions or past infections.

Table 4. The Incidence and Demographics of		
Hepatitis C: Texas, 1993 and 1992.		
	1993	1992
Case Total	384	255
Counties Reporting lncidence Rate (per 100,000 population)	68	44
By Race/Ethnicity:	2.1	1.4
White		
\quad Hispanic	1.9	1.4
African-American	2.0	0.9
Male/Female Ratio	2.1	2.4
Deaths	$1.7: 1$	1.81
Case/Fatality Ratio	1	0

At present, liver function profiles and clinical information must be evaluated to ascertain if anti-HCV-positive patients have acute hepatitis C. Soon there will be more widespread distribution and use of newly developed laboratory tests which measure the p resence of HCV RNA. RNA tests are useful in identifying patients with HCV activity that indicates ongoing infection. Although the HCV RNA tests do not distinguish between acute and chronic HCV infections, the information provided from these tests is important to the overall clinical management of the patient's condition. In addition, tests specific for the IgM class of antibodies will become available.

In 1993,384 cases of hepatitis C were reported from 68 Texas counties (Table4). The 1993 case total reflects a 50.6\%increase over the 1992 total. The number of cases probably will continue to increase as the ability to diagnose the acute condition improves. More than 99% of the cases were reported initially on the basis of specific serology. There was one death reported among the patients with acute illness, a 29-year-old woman from Central Texas.

Figures 9 and 10 show the distribution of cases by age, race/ethnicity, and sex for hepatitis C. Approximately half of the cases occurred among whites (53.3\%). Three of every ten hepatitis C cases were among white males. Only 21 cases occurred among children and adolescents. The patients who were <1 year of age at the time of diagnosis were older than six months of age (so that maternal antibody would have cleared) or had a documented conversion from a seronegative to seropositive status. In each race/ethnic group, adults under the age of 45 accounted for eight of every ten cases. This rate suggests that blood and body fluid exposures via adult, high-risk behaviors such as injection drug use with shared needles, place this group at highest risk.

TDH received numerous reports via screening programs of persons who were positive for hepatitis C antibody. Invariably, these individuals were asymptomatic but were being tested because they had elevated liver function test results, or because testing was required prior to blood or plasma donation. These cases were not reported as acute because they did not

Figure 10. Reported Cases of Hepatitis C per 100,000 Population by Race/Ethnicity and Sex: Texas, 1993

meet case definition criteria. The Centers for Disease Control and Prevention (CDC) also does not accept reports from blood banks or plasma centers.

To illustrate the problems that local health departments encounter with hepatitis C surveillance, a medical chart review was undertaken of hepatitis C cases reported to TDH from the Austin/Travis County Health Departmentin 1993. Of 249 initial reports for hepatitis C, over 85% of these originated from the city hospital. Figure 11 depicts the clinical status of these patients. Only 17\% of the patients had a clinical presentation consistent with acute hepatitis, and these cases were reported. Patients with chronic liver disease or related

Figure 12. Clinical Status of Anti-HCV-Positive Patients: Travis County, 1993

Figure 11. Reported Cases of Hepatitis C per 100,000 Population, by Age Group: Texas, 1993

obstetrical procedures. Six of ten patients admitted for other medical reasons had significant risk factors for hepatitis C such as surgeries and/or transfusions prior to 1990, substance abuse, or injection drug use. Many of these patients had underlying diseases such as tuberculosis which exacerbated their liver problems. It was evident from the patients' medical history that high-risk behaviors associated with substance abuse and injection drug use contributed to progression to chronic hepatitis C in at least half of those patients admitted for other medical reasons. Medical records were not available for approximately 15% of the patients.

The purpose of these efforts was to document the magnitude of hepatitis C reports and to demonstrate the difficulty in distinguishing between incidence and prevalence. However, public hospitals serve a greater proportion of the g enera 1 population that engages in high-risk behaviors than do private sector hospitals. A high proportion of hepatitis C antibody-positive patients in private sector hospitals would be identified through screening needed prior to medical or surgical procedures. Until there are
more specific serologic tests for hepatitis C which would enable us to stage this liver disease with accuracy, attempts at sorting the acute cases from everything else will remain an incredible challenge.

Hepatitis, Non-A, Non-B (Non-C)

During the previous three years, there has been a dramatic decrease in the number of hepatitis non-A, non-B (NANB) cases reported in the U.S. This trend is the result of extensive use of serologic tests for hepatitis C along with tests for hepatitis A and B. Prior to mid-1990, all cases of hepatitis that, serologically, were neither hepatitis A or B, were reported as NANB. In 1993 most of these cases probably would be classified as hepatitis C , although a small number remain non-A, non-B, non-C. Based on recent studies of transfusion-transmitted hepatitis, medical epidemiologists hypothesize that one or more additional bloodborne viruses exist. As with other forms of hepatitis, asymptomatic infections are importantin the epidemiology of NANB because they are an insidious source of infection within the community.

In 1993, 28 cases of NANB hepatitis were reported from four counties (Dallas, El Paso, Harris, and Potter), with 23 (82.1\%) originating from Harris County. The current year's case total is similar to that for 1992 (26 cases). The statewide annual incidence rate for NANB was 0.2 cases $/ 100,000$ population. Seventeen cases involved women; 11 involved men. There were no cases reported among African-Americans. Whites accounted for 60.7% of the cases, and nine cases occurred in Hispanics. Approximately 93% of the cases were determined clinically.

Eighteen of the 28 cases occurred in adults between the ages of 20 and 44 years. The remaining ten cases were identified among children and adolescents. This age distribution pattern supports findings from the CDC's "Viral Hepatitis Surveillance Program." Identifying risk factors, such as injection drug use and personal contact with another NANB case, suggests that NANB hepatitis is caused by one or more blood and body fluid-borne viruses. No deaths were reported in the category of NANB hepatitis during 1993.

InfectiousDisease Epidemiology and Surveillance
Division, (512) 458-7328,458-7676

HIV/AIDS

Acquired immunodeficiency syndrome (AIDS) is a specific group of diseases or conditions that resultfrom severe immunosuppression caused by infection with the human immunodeficiency virus (HIV). This virus specifically infects and depletes a subgroup of T-lymphocytes called helper T-cells. Laboratory analysis identifies these cells by typing specific cell-surface markers on the lymphocyte. The nomenclature for these markers is CD (cluster designation)followed by a group number and a plus or minus sign. The abbreviation CD4+ indicates lymphocytes that are positive for the CD4 marker which is found on the helper T-cell. The decline of CD4+ Tcells has proven to be a reliable indicator of HIV disease progression.

New AIDS Case Definition

Texas ranked fourth in the United States in the number AIDS cases reported $(7,785)$ in 1993 . The most significant change in the total number of AIDS cases reported in 1493 was due to a change in the AIDS case surveillance definition. Over time this definition has been modified and expanded to reflect increased knowledge and improved technology related to the disease. The 1993 revised case definition for AIDS included all HIV-infected persons with CD4+ T-cells fewer than 200 per microliter of blood or less than 14% of total lymphocytes. Also added were HIV-infected persons diagnosed with pulmonary tuberculosis, recurrent pneumonia, or invasive cervical cancer. This change caused a marked increase in reported cases in Texas (Figure 1). The increase reflects mostly the reporting of cases involving persons with previously diagnosed HIV infection not meeting the pre-1993 definition; 4,642 (60%)ff the 7,785 cases reported in 1993 were by the new definition. Some cases reported under the new definition may also have qualified under

Figure 1. AIDS Cases by Year of Report, 1980-1993 25,571 Cumulative Cases Reported through December 31, 1993

Based on data as of September 6,1994
*Expanded ADSSurveillanceDefinition Implemented
\square
the more complex pre-1993 case definition. If a subsequent report meets earlier criteria, such cases are reclassified. Preliminary analysis indicated that relatively few cases (284) reported in 1993 have been reclassified to a pre1993 case definition.

Trends

The long period of time from HIV infection to the development of AIDS precludes measuring trends in recent HIV infections based on AIDS cases. The AIDS cases diagnosed recently reflect HIV infections that may have occurred ten to twelve years ago. The time lag from diagnosis to case reporting of AIDS often spans years; of the cases reported in 1993, 40% were also diagnosed in 1993, but 60% were diagnosed in years prior to 1993.

Texas laws require the reporting of HIV infections, however, reporting has been inconsistent and sporadic. These laws will change in 1994 to include laboratories among the health-care providers who are required to report labora-
tory-confirmed positive HIV tests. This change may provide more complete data for interpreting recent trends. The overall AIDS case rate rose to 43 per 100,000 population in 1993.

Gender and Ethnicity

Because of the new AIDS case definition, comparing rates or the number of cases reported in 1993 to previous years would obscure trends. However, comparing the percent share of cases for different demographic groups and modes of exposure indicates that trends observed in recent years continue. Among demographic groups the percentage of cases reported for white males declined in 1993 to 51.5\% from 58.9% in 1991. African-Americanshad the largestincrease in share of cases. In AfricanAmerican males the percent share rose from 19.3% in 1991 to 22.6% in 1993. The percent share for African-Americanfemales rose from 2.7\%in 1991 to 4.8\%in 1993 (Table1).
increased share of cases among women. There may have been an actual increase in cases among women, or possibly in 1992, the proposed changes to the definition may have altered surveillance activities in anticipation of the change to the new case definition.

The AIDS case rate for females in 1993 was 8.3 per 100,000 population. The rate was significantly higher in the African-Americanfemale population with a rate of 34.5 cases. Hispanic females had a case rate of 4.9 , and white females a case rate of 4.8 per 100,000 . The AIDS case rate for males per 100,000 population was 79.3 cases. The African-Americanmale population had the highest rate, 175.6 cases, followed by white males at 74.3 cases and Hispanic males third at 50 AIDS cases per 100,000 population.

Modes of Exposure

The percentshare of AIDS cases reported from male-to-male sex as the mode of exposure

Table 1. AIDS Cases Reported in Texas by Sex and Race for 1991 and 1993

Sex Race	1991		1993	
	Number of Cases	Percentage of Total Cases	Number of Cases	Percenta of Total C
Males				
White	1,796	58.9	4,012	51.5
African-American	590	19.3	1,756	22.6
Hispanic	481	15.8	1,227	15.8
Other/Unknown	14	. 5	32	. 4
Females				
White	68	2.2	268	3.4
African-American	82	2.7	373	4.8
Hispanic	18	. 6	117	1.5
Other/Unknown	2	<. 1	0	0
Total	3,051	100.0	7,785	100.0

Reported cases of AIDS have increased among females in 1993 with the percent share of cases rising to 9.7% from $5.6 \% \mathrm{in} 1991$. One intent of the revised case definition was to adjust for possible bias that might cause underreporting of women with AIDS. However, in 1992, prior to the new definition, females comprised 9.0% of AIDS cases reported. This suggests that the new definition may not entirely account for the
decreased due to more cases from other modes of exposure such as injecting drug use and heterosexual sex. Male-to-male sex as a mode of exposure constituted a 60% share of cases in 1993 compared with 67% in 1991. Heterosexual sex as a mode of exposure increased from a share of 3% in 1991 to 6% in 1993. Exposure by injecting drug use had the greatest increase from a share of $\mathbf{1 1 \%}$ of AIDS cases in 1991 to 15\% in 1993 (Table 2).

Table 2. AIDS Cases Reported in Texas by Mode of Exposure for 1991 and 1993

Mode of Exposure	1991		1993	
	Number of Cases	Percentage of Total Cases	Number of Cases	Percentage of Total Cases
Male-Male Sex	2,052	67.3	4,687	60.2
Injecting Drug Use (IDU)	341	11.2	1,185	15.2
Male-Male Sex and IDU	299	9.8	702	9.0
Hemophiliac	16	0.5	57	0.7
Heterosexual Contact	102	3.3	468	6.0
Transfusion	35	1.1	78	1.0
No Identified Risk*	164	5.4	571	7.3
Pediatric Cases	42	1.4	37	0.5
Total Cases	3,051	100.0	7,785	

* Reportedmode of exposurefor 1993 cases may be delayed.
** percent figures do not total 100 due to rounding.

Geographic Distribution

In 1993 the majority of AIDS cases in Texas were reported from urban areas. The largest number of cases was reported from Harris County (2,694), followed by Dallas County (1,742), Travis County (608), Bexar County (501), and Tarrant County (402). Among AIDS case rates by county, the highest was in Travis County with a rate of 101.5 cases per 100,000 population followed by Harris (91.1), Dallas (89.2), Bexar (40.2), Galveston (37.6), and Tarrant Counties (31.5). El Paso County, the fifth most populous county, ranks a distant sixth in both number of reported cases (120) and case rate (18.7 per 100,000). Only 41 of the
is 4.8% of the 25,571 cumulative AIDS cases reported through 1993. The cumulative NIR proportion has remained fairly level at 5%, with recently reported cases displaying a higher percentage. Of the 7,785 AIDS cases reported in $1993,7.3 \%$ are classified as NIR. The higher percentage of NIRs among recently reported cases is attributed to the delay between case reporting and ascertainment of risk via investigation (Table2).

NIR investigations are carried out in a variety of ways, depending on the individual circumstances of each case. Medical records, both at the diagnosing facility and at other medical facilities where the individual had been medi-

254 counties in Texas have not yet had a reported AIDS case since the epidemic began in the early 1980s. The disease continues to spread to less urban areas of the state (Figure 2). AIDS is no longer confined to specific groups or geographic regions. Public health strategies for prevention and channeling of resources must be tailored to meet the continuing changes in the epidemic.

AIDS Cases with NIR

A cumulative total of 1,218 AIDS cases were classified as No Identified Risk (NIR) at the end of 1993, which

Figure 2. AIDS Cases Reported in 1993

cally tended, are thoroughly reviewed. Ancillary record systems, such as sexually transmitted disease records, tuberculosis records, case management records, and death certificates also are reviewed for possible risk information. When no risk information can be obtained through record review, the primary care physician and/or associated health care personnel are contacted in order to determine if a mode of exposure is known to them. When circumstances and resources warrant, the individual may be interviewed by surveillance staff to determine risk of HIV exposure.

More than 650 NIR investigations were conducted during calendar year 1993, resulting in over 530 risk determinations. The majority of these reclassifications were through the review of medical records. Three of the reclassifications were via direct patient interview.

Bureau of HIV and STD Prevention (512) 458-7463

Immunization Levels: A RetrospectiveStudy

In 1993 the Texas Department of Health (TDH) conducted a retrospective survey to assess the immunization status of public school kindergarten students at two years of age. Low immunization levels in this group have been reported in surveys conducted by the Centers for Disease Control and Prevention (CDC). According to these 1991 surveys, the proportion of children who were adequately immunized by age two was only 10% in Houston and 42% in El Paso. ${ }^{1}$

A retrospective survey design offers several advantages over other survey methodologies. Childhood immunization records are required for school entry, which guarantees a near 100% response rate. Records are available from all providers, and dose and date-specific information is provided in written form, eliminating reliance on parental recall. Retrospective surveys are generally easier to implement and incur a minimal investment in personnel time and dollars. A disadvantage of the retrospective survey, however, is that the data reflect the immunization rates of the two-year-old children three years prior to the survey date rather than the rates of the current two-year-old population. This survey was conducted during a period of transition in the state's public health region (PHR) boundaries. As a result of the reconfiguration, Texas is now divided into eleven regions rather than eight. The results of this survey are presented using the older eightregion configuration (Figure 1).

The CDC two-stage cluster survey method was used to select a sample of records in each of the eight PHRs and the city of Houston. ${ }^{2}$ Thirtyfive schools per PHR (stage one) and 25 kindergarten students per school (stage two) were randomly selected as survey subjects, with the exception of PHR 4. PHR 4 was divided into two components: 1.city of Houston and 2. PHR 4 , excluding the city of Houston. The two-stage cluster survey method was used in both components, as in the other seven PHRs. Each region's immunization levels were weighted by
the region's proportion of the state's kindergarten population to render overall state levels. In the case of PHR 4, both components' immunization levels were weighted by their proportions of the PHR 4 kindergarten population to arrive at a final immunization level for the region.

Figure 1. Regional Map Prior to March 1993

RETRO software, developed by CDC, was used to select campuses and students and to analyze data. Each region was provided a list of its selected campuses and a copy of the RETRO software. TDH region and/or local health department personnel visited each of these campuses and collected immunization histories on 25 randomly selected kindergartenstudents. Data were provided on diskette to the Immunization Division for analysis and reporting to CDC.

For the purposes of this survey, a child was considered adequately immunized at 24 months of age if he had received at least four doses of diphtheria and tetanus toxoids and pertussis vaccine (DTP), three doses of polio vaccine and

Figure 2. 1993 Texas Retrospective Immunization Survey: Percent of Kindergarfen Students Adequately Immunized* by Age Two, by Public Health Region

Survey was conducted during 1992-93 school year. Adequately immunized means having received 4 DTP, 3 doses of polio, and 1 MMR vaccinations. Students were two years dd during 1989-90 school year. ${ }^{ *}$ Weighted state level is based on 1992-93 school year kindergarten population.
2000. The unprecedented resources made available through the President's Childhood Immunization Initiative have led to an acceleration of activities to reach individual coverage rates for each vaccine. By 1996, at least 90% of two-year-oldsshould be immunized with at least three doses of DTP (3DTP) vaccine, three doses of oral poliomyelitis vaccine (3 OPV), one dose of MMR (1MMR) vaccine, and at least three doses of HibCV. In addition, 70% of two-year-olds should have received three doses of HBV. The 1993 survey results indicated that the weighted state levels for 3 DTP, 3 polio vaccine doses, and 1 MMR were $76.2 \%, 72.1 \%$, and 71.9%, respectively. Obviously, considerable effort will be required for Texas to achieve the 1996 goals.

References

1. CDC. MMWR, February 14, 1992:41(6). Retrospective assessment of vaccination coverage among schoolaged children--selected U.S cities, 1991, p. 104. CDC researchers for these surveys define 'adequately immunized" as having received 4 DTP, $\mathbf{3}$ OPV, and 1 MMR vaccinations at the ages and intervals recommended by the Advisory Committee on Immunization Practices.
2. Zell, Elizabeth, and Eddins, Donald. Guidelines for retrospective school enterers' survey and clinic assessment, p. 62.

Immunization Division (512) 458-7284

Influenza and Flu-like illness

In this report relevant information from 1992 will be included in the discussion of disease trends in 1993.

For reporting purposes, the disease category of "influenza and flu-like illness" encompassesa wide range of upper respiratory infections. Signs and symptoms include fever, cough, coryza, sore throat, malaise, myalgias, arthralgias, and headaches. Reports reflect case totals by week; patient identifiers and demographic information are not required.

Upper respiratory infections of viral etiology account for the majority of cases. Infections due to influenza viruses are most notable, especially during the winter months. Infectious agents such as parainfluenza viruses, adenoviruses, enteroviruses, respiratory syncytial virus, and Mycoplasma species also contribute to the morbidity in this category. Even primary infections due to members of the herpes virus family can result in an upper respiratory syndrome suggestive of a mild case of the "flu."

Many respiratory viruses follow seasonal patterns of incidence. The influenza season typically begins in late fall, continues throughout the winter, and tapers off in early spring. Other viruses, such as parainfluenza viruses or respiratory syncytial virus, circulate to a certain extent with influenza, especially at the beginning and end of the flu season. Slight increases in case totals noted during the
months of May and June represent the expected Slight increases in case totals noted during the
months of May and June represent the expected circulation of parainfluenza virus type 3.

In 1993,277,453 cases of influenza and flu-like illness were reported in Texas. This figure represents a 78.3% increase over the 155,568 cases reported for 1992. Two major factors contribute to the annual fluctuation of case totals: the timing of the beginning and end of each flu season and

Figure 1. Reported Cases of Flu and Flu-Like Illness: Monthly Totals, 1992-1993

the dominantinfluenza virus strain(s) identified for any given season. The 1992-93flu season began later than usual, with approximately twothirds of the cases occurring during the first four months of 1993 (Figure 1). In contrast to the 199192 season, which came to an abrupt halt in early February 1992, the 1992-93 season extended into April as a result of the late emergence and cocirculation of a second and third strain of influenza vinus. The 1993-94 flu season was somewhat unusual in that pre-seasonal virus activity was identified in Louisiana in late August, with no further reports in the Central Southern states (includingTexas) until December when the season began in earnest.

Influenza and flu-like illnesses have been among the most underreported of all the notifiable diseases. Experts believe that up to 10% of the population becomes ill with influenza during any given season. In 1993 reports were received from only 76 of 254 counties. The 236,603 cases from Harris County accounted for 85.3% of the reported morbidity statewide. This case total is based upon the surveillance work conducted at the Influenza Research Center (IRC) at Baylor

College of Medicine in Houston. To estimate the number of cases that actually occur in the greater Houston community, medical epidemiologists at the Center multiply the number of influenza virus isolates recovered during active surveillance by 500 ; they report the estimated number of cases to TDH. The figure for Harris County also includes cases reported by the local health departments. This system of reporting is used in Harris County only. Because influenza statistics represent only a fraction of expected morbidity, 1993 was the last year for which case totals were collected. 'Mluenza and flu-like illness" has been dropped from the list of reportable diseases in 1994. An ongoing statewide sentinel surveillance system for influenza virus will serve as the principle mechanism to document the progress and extent of flu seasons from 1994 onward.

Influenza Virus Surveillance

There are three types of influenza virus, influenza A, B, and C. Infections due to type A or B viruses, indistinguishable on the basis of signs and symptoms alone, account for significant levels of morbidity during the late fall and winter months in temperate climates. Influenza C infections, on the other hand, are usually subclinical and often go unrecognized.

Because of their unique genornic structure, influenza viruses exhibit significant variability over time. Small changes in the antigenic properties of key surface proteins of influenza A or B viruses result in new viral strains or variants. These changes, known as 'antigenic drift," are the natural response of the virus to increasing levels of immunity in the host population. Mluenza A viruses also can exhibit dramatic changes in the antigenicity of the hemagglutinin and neuraminidase capsid proteins, resulting in the emergence of new virus subtypes. Such abrupt changes in the influenza A viruses are referred to as "antigenic shift."

Virus isolation, a lengthy and labor-intensive process, remains the definitive procedure for laboratory identification of influenza viruses. This procedure has been used successfullyfor several years as part of a surveillance network to characterize the epidemiology of each influenza season. Two centers conduct active laboratorybased influenza virus surveillance: TDH in Austin and the Influenza Research Center (IRC) at Baylor College of Medicine in Houston.

In Texas and elsewhere in the nation, influenza A and B viruses continue to alternatefrom one season to the next, with one or the other virus predominating. Figure 2, which shows the profile of influenza virus isolates recovered by the TDH system, depicts the final weeks of the 1992-93 influenza B season and the beginning of the 199394 influenza A (H3N2) season. Figure 3 shows the profile of influenza virus isolates recovered during 1993 by the IRC surveillance in Houston.

Figure 2. Influenza Virus Isolates Recovered by TDH-Based Statewide Surveillance by Week of Specimen Collection, 1993

Typically, there are regional variations in virus circulation patterns in a state the size of Texas. In an effort to compare differences in epidemic periods from one area of the state to the next, TDH surveillance activities have been expanded to include most major metropolitan areas in

Figure 3. Influenza Virus Isolates Recovered by the Influenza Research Center by Week of Specimen Collection: Haris County, 1993

January and February, 1993. Influenza A/Beijing/32/92 (H3N2) and influenza A/Taiwan-like (H1N1) co-circulated with influenza $\mathrm{B} /$ Panama toward the end of the 1992-93 season. The H1N1 viruses are identified as such because of their antigenic similarity to reference HIN1 viruses used for subtyping purposes. According to CDC, however, many HIN1 viruses recovered in Texas and elsewhere in the U.S. were determined to be closely related, if not identical, to influenza A/Texas/36/91. A transitionin dominancefrom influenza B to influenza A occurred in March; all isolates recovered in April for both the IRC and TDH surveillance programs were influenza A viruses.

Texas. During 1993 the TDH network recovered a total of 239 isolates from the following counties: Bexar, Brazoria, Brazos, Briscoe, Dallas, Donley, Eastland, El Paso, Freestone, Galveston, Grayson, Hays, Jefferson, Lubbock, Navarro, Nueces, Potter, Randall, Titus, and Travis. In addition, paired sera from a patient residing in Cass County demonstrated a four-fold rise in titer to influenza A. During 1993 the Influenza Research Center (IRC) in Houston isolated virus from 560 specimens in Harris County. Compared with 1992, the 1993 figures represent increases of 285% for the TDH program and 294% for the IRC program. Although some of this increase can be attributed to the type(s) of influenza virus dominating a season, the course of a flu season, when the seaSonal peak occurs, and the length of the season, much of this rise is due to a growing interest in submitting specimens for laboratory confirmation of influenza. During the calendar year 1993, the second half of the 1992-93 season continued well into April because of late-emerging viruses, and very intense influenza virus activity was detected in November and December, during the firsthalf of the 1993-94 season.

A comparison of Figures 2 and 3 demonstrates regional differences in virus activity. For both the IRC and TDH surveillance programs, influenza B/Panama/45/90 dominated the season during

The geographic distribution of the late-emerging influenza A viruses was extremely focused. There was significant influenza A (H3N2) virus activity in El Paso and West Texas, consistent with CDC observations of such a focus in the DesertSouthwest at the close of the 1992-93 season. This event was considered as a "herald wave" to indicate the most likely virus candidate expected to appear in the season which followed. In contrast, IRC-based surveillance detected a higher level of influenza A (H1N1) activity compared with the profile of viruses recovered elsewhere in the state.

The 1993-94 season in Texas started in early November with viruses detected in both Austin and Houston. Prior to this viral activity in Texas, there had been unusual pre-season activity in Louisiana, with at least three distinct clusters of culture-confirmed influenza A (H3N2) cases during August and September. Federal health officials expected the flu season to start in Texas and elsewhere in the country shortly thereafter, but no virus activity was detected until November when the influenza A/Beijing/32/92 (H3N2) virus emerged in full force. High levels of morbidity were evidentearly in December. Interestingly, this virus dominated the entire 1993-94 season, with no co-circulating viruses detected.

Historically, attack rates are highest among children during influenza B seasons. The expected age distribution was noted during the second half of the 1992-93 influenza B season, with children ages five to nine accounting for approximately $35 \%-40 \%$ of the culture-confirmed cases. When influenza A seasons occur, especially those dominated by H3N2 viruses, the distribution of cases by age group is more diffuse. Figure 4 shows the age distribution of patients with cultureconfirmed influenza A (H3N2) for both the statewide and Houstonbased surveillancesystems. In Houston two out of three patients were from 5 to 14 years old. Thirty percent of the virus isolates recovered in the TDH-based surveillancecame from patients between the ages of 15 and 30 years; only 7.7% of the influenza \mathbf{A} viruses recovered in Houston were from that age group. The elderly often experiencesubstantial morbidity during influenza $\mathrm{A}(\mathrm{H} 3 \mathrm{~N} 2)$ seasons compared with that for influenza B seasons. During the Compared, 1993

Figure 4. Age Distribution of Patients with Confirmed Influenza, A(H3N2): Harris Counfy and TDH Surveillance

influenzaB season of 1992-93, no isolates were recovered from Houston patients age 60 or older. In contrast, 9.1% of the influenza A (H3N2) isolates from Houston in November and December came from this age group.

Infectious Disease Epidemiology and Surveillance Division (512) 458-7328,458-7676

Injury: Progress in Meeting Year 2000 Objectives

Death and disability from trauma continue to exact an enormous toll on Texas citizens. Those working in the area of trauma face the difficult challenge of finding solutions to one of society's most challenging problems. Fortunately, development of a guide for injury preventionefforts was begun in the mid-1980s. A set of measurable targets for injury mortality and morbidity were established as part of the Healthy People 2000 Objectives. These measurable targets provide not only a compass to help direct efforts but also a means to gauge progress.

Many of the rates and percentages presented in this report are derived from Texas Trauma Registry (TTR) data. Particularly useful were 1993 electronic patient data provided by five hospitals and 108 ambulance firms. These data
are the basis for morbidity objectives in the prevention and treatment of injuries in Texas.

Texas deaths from injuries in 1993, as they relate to state and national objectives, are presented in Table 1. The state or national objectives for drownings, poisonings, homicides, and suicides have not been met yet.

Two historical graphs help contrast where efforts appear to be meeting with success or resistance. Figure 1 shows death rates from motor vehicle crashes (MVCs) for 1983 through 1993. The relatively smooth downward slope suggests success in controlling and reducing the death rate from MVCs. This success is further exemplified by Texas' 1.8 deaths per one hun-

Table 1. Year 2000 Objectives, Injury Mortality

	Texas Deaths 1993	Texas Death Rate 1993*	Year 2000 Texas	bjectives* National
Unintentional Injuries	6,136	31.6	none	29.3
Motor Vehicle-Related Crashes	3,179	17.6	17.3	16.8
		1.8**	1.6**	1.9**
Falls	746	2.6	3.3	2.3
Drownings	394	2.3	2.1	1.3
Poisonings	478	2.5	2.2	
Fires-Residential	237	1.2	1.2	1.2
Intentional Injuries	4,494	25.1	none	17.7
Homicides	2,227	12.8	none	7.2
Suicides	2,267	12.3	7.9	10.5
Texas Year 2000 Objectives are crude death rates. All other death rates are per 100,000 population and are age adjusted to the 1940 U.S. population.				
** Deaths per 100 million vehicle miles traveled.				
Texas or National Objective MET				

NOTES: 1. The "Unintentional Injuries" total includes subcategories that are not listed 2. Identify Codes:
A) Unintentional Injuries

1) Motor Vehicle-Related Crashes
2) Falls E880-E888
3) Drownings E830,E832,E910
4) Poisonings E850-E858,E860-E869
5) Fires-Residential
B) Intentional Injuries
6) Homicides
7) Suicides

E800-E949
E810-E825

E890-E899
E950-E969
E960-E969
E950-E959

SOURCES: \quad-Trauma Registry, Injury Prevention and Control Program. -Mortality data were obtained using EPIGRAM software.

Figure 1. Mortality Rates for Motor Vehicle Crashes: Texas, 1983-1993

The Healthy People 2000 Objectives also include measurable targets for injury morbidity those who were injured and survived. The objectives include injury prevention in transportation vehicles- (Table 2). Occupant protection (seatbelt, shoulder harness, airbag, or child restraint use) for front seat occupants and motorcycle helmet use are legally required. Compliance with these two types of injury protection is correspondingly higher than that for bicycle helmet use, which is not legally required in Texas. These data on the use of occupant
dred million vehicle miles traveled, which meets the National Year 2000 Objective (Table1). Remarkable progress is being made in reducing deaths from motor vehicle crashes in Texas. However, the 3,179 deaths from MVCs in 1993 indicates considerable work remains.

In contrast, Figure 2 presents death rates from homicide. The slope of the graph fluctuates considerably and suggests that an effective combination of measures for preventing homicides has not yet been found.

Figure 2. Death Rates from Homicide:. Texas, 1983-1 993
 Most likely, a comprehensive approach like the one taken with motor vehicle crashes will be needed to reduce the homicide rate.
protection devices are based on limited reporting from Texas ambulancefirms. The Texas sample consists of patients cared for by ambulance firm personnel. Such patients are some-

| Table 3. Year 2000 Objectives, Hospital |
| :--- | :--- |
| Admissions |\quad| this time to compute meaningful rates. |
| :--- |
| Nevertheless, since these are the only data |
| available at the present time, TTR is focus- |
| National Year 2000 |
| ing future efforts on the four categories of |
| Objectives (per 100,000) |

Injuries resultingin hospital admissions are also included in the Healthy People $2000 \mathrm{O}_{\mathrm{j}}$ ectives. National Year 2000 objectives of four major categories are presented in Table 3. For each category, measurable targets are expressed as number of admissions per 100,000 population. There are not enough patient injury data currently being received from Texas hospitals (5) at

Reference ${ }^{\text {Realthy People } 2000-\text { National Health Promotion and }}$ Disease Prevention Objectives. U.S. Department of Health and Human Services, 1990; DHHS Publication No. (PHS) 91-50212.

Inju y Prevention and Control Program (512) 458-7266

Malaria

There were 48 reported cases of malaria in 1993, three more than in 1992. For the second consecutive year the number of reported cases was well below the preceding 10-year annual average of 72 reported cases. Forty-six cases were imported; two were congenital infections.

Of the imported cases, 27 (60\%) were in males and 18 were in females. Neither sex nor country of exposure were reportedfor one imported case. Twenty-one (46%) patients were classified as African-Americans, although in many cases the patient was in fact a black African and not an American citizen. Thirteen patients were Asian, 10 were white, and two were Hispanic. Age was reported for 44 patients and ranged from 2-77 years, with a median of 22. Twelve (27%)were less than 10 years old, including nine African-Americansand three Asians.

Four species of Plasmodium (P. falciparum, P. vivax, P. ovale, and P. malariae) infect humans. Among imported cases, 20 were due to P. vivax, 15 to P.falciparum, two to P. ovale, and one to P. malariae. One was a mixed infection caused by P. vivax and P. malaria. The Plasmodium species was not known for nine individuals.

In recent years, India and Nigeria have been the source countriesfor the majority of the imported malaria cases in Texas; this observation held true in 1993. At least 55% (22) of patients with imported malaria had been in India (12) or Nigeria (10) prior to onset of illness. Four additional patients had been in Africa (3) or West Africa (1)łhus they may have been in Nigeria. Three patients probably were infected in Honduras and two were infected in Ethiopia. Individual patients reportedly acquired their infections in the African countries of Angola, Guinea, Sierra Leone, Somalia and Zaire; the Asian countries of Afganistan, Nepal, and Thailand; and the South American countries of Colombia or Venezuela. No source country was reported for six patients.

Although malaria chemoprophylaxisis not 100% effective at preventing infection, appropriate chemoprophylaxis, along with use of insect repellents and other mosquito-avoidance techniques, is strongly recommended for persons living or traveling in malarious areas. Some information on chemoprophylaxis was availablefor 25 patients. Fourteen (56%)used no chemoprophylaxis. Of the 11 who reportedly used a chemoprophylactic drug, only two used a regimen recommended by CDC. Most of the inappropriate regimens involved the use of chloroquine phosphate in areas of Africa, Asia, and South America where chloroquine-resistant malaria occurs. Appropriate chemoprophylaxis failed in two patients. A Peace Corps Volunteer correctly used chloroquinein Honduras; her long-term exposure probably resulted in infection despite anti-malaria drugs. A traveler to Ethiopia used mefloquine, the recommended drug, but stayed longer than he originally anticipated and ran out of mefloquine before leaving.

Congenitally-acquiredP. vivax infectionswere recognized in two one-month old infants born in Texas. The first occurred in a 32-day-old girl living in Houston, whose parents were from India. Although not reported at the time, the infant's mother was diagnosed and treated for malaria (treatmentregimen not reported) during the fourth month of pregnancy. The mother's physician suggested that the pregnancy triggered the mother's illness, as there was no history of recent travel outside the US.

The second congenital infection was in a 43-day-old boy from El Paso, whose mother had come to Texas from Honduras. The mother was pregnant when she arrived in Texas. Malaria smears from the infant's mother and a twin brother were negative. The mother, despite the negative blood smear, was undoubtedly the source for her infant's infection. Low levels of parasiternia can occur in persons who have
been infected for extended periods. In this situation, serologic tests may be an appropriate diagnostic tool. A Nigerian donor for Texas' two 1992 P. falciparum transfusion-acquired cases was smear-negative, although he had an elevated titer to P. falciparum. Serologic tests were not performed on the Honduran mother. The twin sibling was treated for malaria based
on his brother's infection and some clincial symptomatology, but was not included in the official morbidity report which requires laboratory confirmation of infection.

Infectious Disease Epidemiology and Suweillance Division (512) 458-7328,458-7676

Measles

Measles is an acute viral infectious disease easily prevented by routine measles vaccination during childhood. The disease is characterized by a high fever followed by a rash that spreads from the face to the body. Other symptoms may include cough, coryza, conjunctivitis, and Koplik's spots. Complications from measles include otitis media, pneumonia, seizures, encephalitis, and death.

Ten cases of measles were reported in Texas in 1993, a marked decline from the 1,097 cases experienced in 1992 and the lowest recorded number of cases since measles morbidity began being monitored in 1920. All ten cases occurred in the first six months of 1993. Figure 1 illustrates measles incidence for the five-year period 1989 to 1993. No measles-associated deaths occurred in 1993. Nationwide, 515 cases of measles were reported from 29 states. Texas accounted for 2% of the nation's measles morbidity and ranked ninth among all states.

Two clusters of measles occurred in Texas in 1993 involving eight of the ten reported cases. A cluster of four measles cases occurred in Liberty County. All four cases occurred in relatives who received day-care in the same household. An additional epidemiologically linked patient from Galveston County was infected in this household as well. A cluster of two cases occurred in Harris County with an additional case in adjoining Fort Bend County. The source, a 33-year-old male, was infected with the measles virus while in the Philippines. The virus was spread to his 12-month-old son who, in turn, infected a 14 -month-old child from Fort Bend County who attended the same day-care center. Two isolated cases occurred in Harris County and El Paso County.

Figure 1. Reported Cases of Measles: Texas,
1989-1993

Hospitalizations and complications associated with measles continue to emphasize the severity of the disease. Forty percent (4) of the measles cases in Texas required hospitalization. Pneumonia, dehydration, and otitis media were the cited causes of measles-associatedhospitalizations. One or more complications were noted for two cases.

Measles was confirmed in individuals ranging in age from 12 months to 33 years. Children under five years of age accounted for 80% (8) of all Texas measles cases for 1993. Of children 1-4 years of age, five were African-American, one was Hispanic, one was white, and one was classified as other. As in previous years, measles predominantly affected unvaccinated preschool children. Sixty percent (6) of measles cases occurred in children of preschool age who had not been immunized against measles. Only one patient was adequately vaccinated. The distribution of doses of measles vaccine received is shown in Figure 2. This situation illustrates the need to adequately vaccinate preschool-aged children to protect against measles.

Ongoing measles morbidity, both in Texas and the United States, brings to light the potential severity of all vaccine-preventable diseases and the necessity of adequately immunizing children in accordance with current age-appropriate recommendations. Enhanced immunizationinitiatives to improve immunization levels among preschool-agechildren have been implemented in Texas as well as throughout the United States. Through these immunization initiatives, as well as immediately identifying and reporting measles cases and implementing aggressive outbreak control measures, measles morbidity can be reduced in Texas.

Immunization Division (512) 458-7284

Figure 2. Doses of Measles Vaccine Received Prior to lliness Onset, Measles Cases: Texas, 1993

Meningococcal Infection

Meningococcal diseases are invasive infections caused by the bacteria Neisseria meningitidis. The most common presentations are meningitis and/or meningococcemia, but other manifestations such as septic arthritis and pericarditis may also occur. While meningococcal infections also can be asymptomatic or cause only upper respiratory symptoms, only invasive disease is reportable in Texas. Meningococcal infections are confirmed in the laboratory by isolating the organism from a normally sterile body fluid, most often cerebrospinal fluid (CSF) or blood. One hundred and fifty-seven cases of invasive meningococcal infection were reported in Texas during 1993. The majority (71%) were reported as meningitis; the remaining were meningococcemia (44) and septic arthritis (1). Even though all cases were culture confirmed, serogrouping was available only for 33% of the reported cases. Twenty-eightwere group C, 14 group B, nine group Y, and one group W135.

Since 1990 there has been a steady increase in the number of reported meningococcalinfections. Reported cases increased by 41% in 1993. The 157 cases reported represented an incidence rate of 0.8 cases per 100,000 population. Fiftythree percent of the patients were males. The distribution of patients by race/ethnicity was 87.5% white, 18% Hispanic, and 11.8% AfricanAmerican. The individuals ranged in age from one day to 88 years. Over 50% (86) of the cases occurred in children under the age of eight years and 31% (27) of the children were infants under one year of age. Infants under one year of age continue to experience the highest age specific incidence rate: 8.5 cases per 100,000 population.

The 19 patients who died from meningococcal infections during 1993 ranged in age from one day to 86 years. Thirty-six percent of the 19 deaths were in children eight years of age or younger.

One cluster of invasive meningococcal disease was reported in Texas in 1993. During February and March of 1993, five Grayson County residents developed illness. One of the five died. Three of the patients lived in Denison, and two lived in Sherman. All of the individuals were between the ages of 4 and 27 years. All had blood or CSF cultures positive for N. meningitidis serogroup C . The attack rate for Sherman and Denison residents between 2 and 29 years of age was approximately 24.5 per 100,000 population, well above the annual incidence rate of 1 case per 100,000 population in the United States. This cluster of infections was interesting because attendance by the patient or a household member at a bar was associated with an increased risk of disease. A community-widemeningococcalvaccination campaign was carried out for individuals ages 2-29 years by the Grayson County Health Department, and by June 1993 approximately $50 \%(11,000)$ of the targeted population was vaccinated.

One case of group C meningococcal infection occured in September 1993. This individual was a 45 year old male from Denison. No cases in the vaccine targeted population occurred in 1993.

Infectious Disease Epidemiology and Surveillance Division (512) 458-7328, 458-7676

Introduction

The term neural tube defect generally applies to anencephaly, encephalocele, and spina bifida. These congenital anomalies arise in the first three to four weeks of development. Anencephaly occurs when the neural tube is left open on the anterior end, at the level of the cranium; it is a uniformly fatal birth defect. Encephalocele, a smaller cranial defect through which the meninges and brain may herniate, may be compatible with life. Spina bifida, meningomyelocele, and meningocele are defects along the vertebral column; 80% of these lesions are 'open". Spina bifida is the most common vertebral defect. Although most spina bifida lesions can be surgically repaired, neurologic sequelae are common.

The Centers for Disease Control and Prevention (CDC) estimates that 300,000-400,000 infants with anencephaly and spina bifida are born yearly worldwide. Neural tube defect (NTD) rates vary dramatically from country to country and are based on widely varied methods of surveillance.

Ethnicity data presented in the first section of this reportare based on the following guidelines. For the mother, CDC definitions for white, Hispanic, African-Arnerican, and "other" were used. The ethnicity of the infant was determined using the computation described.in Table 1. For the rest of the report, the same guidelines were used except that the Non-Hispanic grouping includes white, African-American, and "other."

Table 1. Variables used in Race/Ethnicity Computation

```
MRACE - (Mother's Race Code)
```

(0) - Other
(1) - White
(2) - Black
(3) - North American Indian
(4) - Chinese
(5) - Japanese
(6) - Hawaiian
(7) - Filipino
(8) - Other Asian
(9) - Not Classified
(10) - Central or South American Indian

MSORG - (Mother's Hispanic Origin)
(0) - Non-Hispanic
(1) - Mexican
(2) - Puerto Rican
(3) - Cuban
(4) - Central or South American Hispanic
(5) - Other Hispanic
(9) - Not Classified

RACE - (Computed Race/Ethnicity of Child's Mother)
(1) - White
(2) - Black
(3) - Hispanic
(4) - Other

WHIE: If $(\mathrm{MRACE}=1)$ and $(\mathrm{MSORG}=0$ or 9$)$ then race $=1$
BLACK: If $(\mathrm{MRACE}=2)$ then race $=2$
HISPANIC: If (MRACE $=0,1,3,9$, or 10$)$ and
(MSORG $=1,2,3,4$, or 5) then race $=3$
OTHER: If (MRACE $=0,3,9$, or 10 and MSORG $=0$ or 9) or (MRACE $=4,5,6,7$, or 8) then race $=4$

Patterns of Anencephaly in Texas 1992

In 1993 Texas did not yet have a uniform system of birth defects surveillance. A high proportion of anencephalic births, however, can be identified through surveillance of live birth, fetal death, and death certificates. The results of several epidemiologic inquiries demonstrate the usefulness of this available information.

For 1992,112 anencephalic births were identified from Texas vital records, including 56 (50\%)from fetal death certificates, 55 (49\%) from live birth certificates, and one (1\%) from a death certificate. The statewide prevalence of anencephaly in 1992 was 3.5 per 10,000 live births.

Figure 1. Prevalence of Anencephalic Births by Public Health Region, 1992

Figure 1 shows the prevalence of anencephalic births by the state's Public Health Regions (PHRs). The highest prevalence was found among births to residents in PHR 8 with 5.2 anencephalic births per 10,000 live births.

The prevalence of anencephaly varied by the gender of the child and the mother's ethnicity/race. The prevalence of anencephaly among female births was higher (4.2 per 10,000 live births) than among male births (2.8 per 10,000 live births). Figure 2 shows the variation of the prevalence of anencephaly by ethnicity/race. The highest prevalence of anencephaly was

Figure 2. Prevalence of Anencephaly by Race/ Ethnicity of Biths: Texas, 1992

Monitoring Division conducted a study with the assistance of the Health Studies Program and the Bureau of Vital Statistics. For the six largest urban counties, the Division looked at all infant and fetal deaths (20+ weeks gestation) for which anencephaly was recorded as the underlying cause of death from 1991 through 1993. These six counties (Bexar, Dallas, El Paso, Harris, Tarrant, and Travis) recorded a total of 547,584 live births over the threeyear period, which comprised 56% of all live births statewide. Cases were categorized by type of delivery hospital (public vs. private) and by Hispanic ethnicity. In this study, Hispanic ethnicity was determined by the mother's self-stated race/ethnicity on fetal death records and by the reported race/ ethnicity on infant death records. Denominators used to calculate "prevalence at birth were the number of occurrent live births and fetal deaths in each category. The results of this study are shownin Table 2.

Figure 3. Prevalence of Anencephaly by Number of Previous Live Births

Table 2. Anencephaly Prevalence*, by Hispanic Origin and Hospital Type at Delivery:
Six Largest Counties*", 1991-1993

	Public			Private				Total		
	Cases	Prev	95\% CLs	Cases	Prev	95% CLs	Cases	Prev	95% Cls	
Hispanic	43	4.51	$(3.26,6.07)$	31	2.60	$(1.77,3.69)$	74	3.45	$(2.71,4.33)$	
Non-Hispanic	18	3.50	$(2.07,5.53)$	45	1.58	$(1.15,2.11)$	63	1.87	$(1.44,2.39)$	
Total	61	4.16	$(3.18,5.34)$	76	1.88	$(1.48,2.35)$	137	2.49	$(2.09,2.94)$	

Occurrent cases per 10,000 occurrent live births + fetal deaths, with 95\% confidence limits (95\% CLs)
** Bexar, Dallas, 日 Paso, Harris, Tarrant, and Travis counties

For the three-year period, the overall prevalence of anencephaly in urban counties was 2.49 per 10,000 live births plus fetal deaths. The true prevalence may be somewhat higher, as some diagnosed cases may not have been recorded as a cause of death. This anencephaly prevalence is approximately 40% lower than that determined in a 1992 study of the 14 counties along the Texas-Mexicoborder. In that study, an anencephaly prevalence of 4.20 per 10,000 live
ratio $=2.21$, or $4.16 / 1.88 ; p<0.05$) (Table2, Figure 4). A statistically higher prevalence in public (vs. private) facilities was observed for both Hispanics and non-Hispanics. Using type of delivery hospital as a rough indicator of socioeconomic status, this finding suggests that the birth prevalence of anencephaly in these areas is somewhat associated with income level. An association between low socioeconomic status and neural tube defects has been observed in other studies. This public-private difference in

Figure 4. Anencephaly Prevalence*, by Hispanic Origin and Hospital Type at Delivery: Six Largest Counties ${ }^{\text {「* }}$, 1991-1993

* Occurrent cases per 10,000 occurrent live births + fetal deaths, with 95% confidence intervals ** Bexar, Dallas, El Paso, Harris, Tarrant, \&Travis counties
anencephaly prevalence may reflect differences in the availability and utilization of prenatal diagnostic and pregnancy termination services, perhaps partly due to economic factors. However, not all public sector deliveries occur among low-income women. Furthermore, some private hospitals accept Medicaid patients. Prevalence also may be influenced by referral patterns. Therefore, the true prevalence difference between income levels, as reflected by having obtained services from public or private facilities, is difficult to determine from these data.

The prevalence of anencephaly among Hispanics in the urban counties was 84% higher than that among non-Hispanics (prevalence ratio $=1.84$, or $3.45 / 1.87$; $p<0.05$) (Table 2). This ethnic difference was statistically significant in the private sector, but not in the public sector. The higher prevalence of anencephaly in Hispanics has been described in other studies.

Vital records are generally a poor primary data source for studies on birth defects because many defects are not manifested until after the infant has been released and the birth certificate has been submitted to the Bureau of Vital Statistics. However, death certificates are useful in providing information on anencephaly,
because anencephaly, unlike most birth defects, is a universally fatal condition.

In the near future, the Texas Birth Defects Registry and the Texas Birth Defects Monitoring Division will be able to supplement these vital statistics data with a wealth of other data on birth defects from a variety of sources. The Division will begin piloting the registry in Public Health Regions 6 and 11 on January 1,1995 (see Figure 1) and hopes to expand its registry statewide in late 1996.

Texas Neural Tube Defect Surveillance and Intervention Project

In April 1991 three anencephalicinfants were delivered in Brownsville, Texas within a 36hour period. This investigation revealed that Cameron County women who conceived during 1986 through 1989 had significantly lower NTD rates (14.7 cases per 10,000 live births) than those of women who conceived during 1990 and 1991 (27.1 cases per 10,000 live births). These data included cases that were spontaneously aborted at ≤ 20 weeks gestation as well as cases that were terminated at any gestational age. For women who conceived during 1990-91 the anencephaly rate was 19.7 cases per 10,000 live births. The anencephaly to spina bifida ratio ($\mathrm{A}: \mathrm{SB}$) during that period was 4:1. In contrast, for women who conceived during 1986-89 the anencephaly rate was 9.6 per 10,000 live births, and the A:SB ratio was 2:1. Based on these data, the high NTD rate during 1990 and 1991 clearly can be attributed to an anencephaly cluster.

In late summer of 1992, the Texas Department of Health (TDH)responded to a CDC request for proposal (RFP) to implement NTD surveillance and risk reduction activities in a high prevalence area. The RFP also requested a casecontrol study for NTD risk factors. TDH was
awarded a cooperative agreement based on a proposal to carry out these activities in the 14 counties along the 1,000-mile Texas-Mexico border. The following paragraphs describe the TDH Neural Tube DefectSurveillance and Intervention Project (TNTDP). These activities require extensive travel by three teams stationed along the border.

Surveillance. The surveillance portion of the TNTDP involves prospective casefinding through the following data sources: the 21 hospitals of the 14-county Texas-Mexico border
study area in which births occur, birthing centers, genetics clinics, ultrasound centers, abortion centers, prenatal clinics, and birth attendants. (Birth attendants include lay midwives, certified nurse midwives, and nonhospital physicians.) Every attempt is made to identify both prenatally diagnosed fetuses and out-of-hospital births and abortions.

The time period for the surveillance data reported here is from January 1 through December 31,1993. For this period, 67 NTD-affected pregnancies were identified among women

County	Type*	Live Births	Cases	Rates*'	95\% CI
Cameron	R	7,641	11	14.4	[7.2-25.8]
	0	9,436	14	14.8	[8.1-24.9]
Hidalgo	R	12,639	19	15.0	[9.2-23.5]
	0	12,676	15	11.8	[6.6-19.5]
Starr	R	1,358	1	7.4	[0.2-41.0]
	0	949	2	21.1	[2.6-76.1]
Zapata	R	217	1	46.1	[1.2-256.8]
	0	5	0	--	--
Webb	R	4,745	11	23.2	[11.6-41.5]
	0	5,305	9	17.0	[7.8-32.2]
Maverick	R	1,164	2	17.2	[2.1-62.1]
	0	1,502	2	13.3	[1.6-48.1]
Kinney	R	45	0	--	--
	0	0	0	--	--
Val Verde	R	942	1	10.6	[0.3-59.1]
	0	982	1	10.2	[0.3-56.7]
Terrell	R	20	0	--	--
	O	0	0	--	--
Brewster	R	114	1	87.7	[2.2-488.7]
	0	246	1	40.7	[1.0-226.5]
Presidio	R	136	1	73.5	[1.9-409.7]
	0	25	0	--	--
Jeff Davis	R	19	0	--	--
	0	0	0	--	--
Hudspeth	R	70	0	--	--
	0	5	0	--	--
El Paso	R	15.956	14	8.8	[4.8-14.7]
	0	17,749	15	8.5	[4.7-13.9]
Total	R	45,066	62	13.8	[10.5-17.61
	O	48,880	59	12.1	[9.2-15.6]
$R=\text { resident }$ $\mathrm{O}=$ occurrent per 10,000 Live Births; rates are based on time period of delivery or termination					

County	Anencephaly Cases (Rate)*		Spina bifida Cases (Rate)*		Other		Total	$\begin{aligned} & \text { NTDs } \\ & \text { (Rate)* } \end{aligned}$	$\begin{aligned} & \mathrm{A}^{2} \mathrm{SB}^{+} \\ & \text {Ratio } \end{aligned}$		
			Cases	(Rate)*							
Cameron	5	(6.5)			5	(6.5)	1	(1.3)	11	(14.4)	1.0:1
Hidalgo	6	(4.7)	10	(7.9)	3	(2.4)	19	(15.0)	0.6:1		
Webb	7	(14.7)	4	(8.4)	0	(0.0)	11	(23.2)	1.8:1		
El Paso	8	(5.0)	6	(3.8)	0	(0.0)	14	(8.8)	1.3:1		
Other	2	(4.9)		(9.8)	1	(2.4)	7	(17.1)	0.5:1		
Total	28	(6.2)	29	(6.4)	5	(1.1)	62	(13.8)	1.0:1		

Rates are cases per 10,000 live births (in1993) and are equivalent to prevalenceat birth; cf., Table 1 for 1998 live births
${ }^{+}$A:SB is the ratio of cases of anencephaly and other anomalies (allICD-9 code740), including craniorachischisis, to cases of spinabifida.
who delivered or terminated their pregnancy in the 14 -county study area; 17 (25.4%)were terminated or spontaneously aborted at ≤ 20 weeks gestation, 14 (20.9\%)delivered or terminated between 21 and 33 weeks, and 36 (53.7\%) delivered or terminated at 234 weeks. A prenatal diagnosis was reported for 72% of the cases. Of the 67 NTD-affected pregnancies, 62 resident and 59 occurrent mothers met the case and residency requirements. A birth was counted as a resident birth when the birth or termination involved a mother who was a resident of one of the 14 study-area counties; an occurrent birth or termination was a NTD-affected outcome that occurred in one of the 14 study-area counties. This difference is important because of the considerable migration for birth from a county of residence to a differentcounty which may or may not be within the study area. Active surveillance detects all births that occur. However, county-specific residence rates require the mother's residence; exposure is coupled to residence, not occurrence. The geographic distribution of these cases and county-specific rates with confidence intervals are illustrated in Table 3. Rates are equivalent to prevalence at birth.

In contrast to the high rate of anencephaly identified in Cameron County during 1990 and 1991 (i.e., 19.7 per 10,000 live births), the rate for 1993 was 6.5 per 10,000 live births. Four counties; Cameron, Hidalgo, Webb, and El Paso,
accounted for 90% of the births. Together these counties had an anencephaly rate of 6.3 per 10,000 live births; aggregately, the 14 border counties had a rate of 6.2 per 10,000 live births. In 1993 the Cameron County spina bifida rate equaled the anencephaly rate at 6.5 per 10,000 live births. The four largest counties had a spina bifida rate of 6.1 per 10,000 live births, and the 14 border counties had a rate of 6.4 per 10,000 live births. For 1993 A:SB was 1.0:1 for Cameron County, the four largest counties, and the 14-county aggregate. County-specific rates are shown in Table 4.

Only three of the 62 patients in 1993 were nonHispanic. Hispanic rates were only slightly higher than overall rates. The Hispanic anencephaly and spina bifida rates in Cameron County were both 7.1 per 10,000 live births, which is not significantly different from the overall rate of 6.5 per 10,000 live births. Similarly, the Hispanic A:SB ratio is 1.0:1 for both Cameron County and the four largest counties together, and 0.9:1 for the 14-county aggregate.

Analysis of the sex-specific birth prevalence by NTD type showed that 57% of all anencephaly cases were girls and 21% were boys. Gender was not identified for 21% of the infants (Table 5). The rate of anencephaly for girls was 7.2 per 10,000 female resident live births. The male anencephaly rate was 2.6 per 10,000 male resident live births. In contrast, boys and girls were
more equally represented among spina bifida cases with 45% being male; 41% female; and 14% undetermined. The rate of spina bifida for
folic acid/multivitamin supplement if they were contracepting. Women who were not contracepting were placed on a daily multivita-

					Undefined		
Type of NID	No.	(Rate)+	No.	(Rate)+	No.		(Rate)
Anencephaly (all 740.0)§	6	(2.6)	16	(7.2)	6	28	(6.2)
Spina Bifida (all 741.0)	13	(5.7)	12	(5.4)	4	29	(6.4)
Encephalocele (all 742.0)		(0.4)		(1.8)	--		(1.1)
Total by Sex		(8.8)		(14.4)	10	62	(13.8)
\$ $\begin{aligned} & \text { per 10,000 male orfemale live births } \\ & \text { total anencephaly, including otheranomalies underthe rubric of ICD-9c ode } 740 \text {, such a s craniorachischisis }\end{aligned}$							

female births was 5.4 per 10,000 female resident live births. The male spina bifida rate was 5.7 per 10,000 male resident live births.

Folic-acid Intervention. The time period for the intervention data reported here is from January 1,1993 through December 31,1993. Those women whose first NTD-affected pregnancy was delivered or terminated during 1993 and who reside in the study area were interviewed and enrolled in the intervention program. They were provided preconception, pregnancy, and NTD risk-reduction education and counseling and given a low-dose, 0.4 mg
min regimen that provides 4 mg folic acid. Health histories were obtained and blood was drawn for serum folate, red blood cell folate, $\mathrm{B}_{12^{\prime}}$ glucose, and a complete blood count prior to supplementation. Women who lived outside the study area and women with NTD-affected pregnancies before 1993 were educated but not given folic acid. Because no prenatal multivitamin with 4 mg of folic acid currently exists, a prenatal multivitamin with 1 mg of folic acid was packaged with three 1 mg folic acid tablets to provide 4 mg of folic acid per day to highrisk women who may have become pregnant.

Status	Number	Percent	Status	Number	Percent
Consented and on folic acid	41	79	4.0 mg	10	24
			0.4 mg	28	68
			0.8-1.0	3	7
Consented and	4	8	Pregnant	2	50
not on folic acid			Pending	2	50
Eligible/not enrolled	7	13	Lost	1	14
			Refused	5	71
			Quit	1	14
Total eligible cases	52	100			
Total ineligible cases	15	100	Moved	12	80
			Tubal ligation	3	20

The three project teams began enrolling cases in the intervention study in September 1993. As of December 31, 1993, 67 NTDaffected pregnancies had been identified, of which 52 were eligible for the intervention study. Of these, five refused to enroll in the intervention study, one could not be located, two were
not placed on folic acid because they were identified prenatally and were still pregnant, and two were pending enrollment. Of the 41 women who were placed on a folic-acid containing supplement, 10 (24\%)took high dose folic acid (4.0 mg), 28 (68%)took low dose folic acid $(0.4 \mathrm{mg})$, and three (7%)took physicianprescribed prenatal vitamins containing 0.8 to 1.0 mg folic acid (Table6).

Assessment of the efficacy of periconceptional folic acid in the prevention of NTD recurrence
must await several years of pregnancy outcomes due to the relatively small number of case mothers in this study.

Noncommunicable Disease Epidemiology and Toxicology Division (512) 458-7222

Texas Birth Defects Monitoring Division (512) 458-7232

Infectious Disease Epidemiology and Surveillance Division (512) 458-7328, (512) 458-7676

Occupational Disease Surveillance

The Texas Occupational Disease Reporting Act was passed by the 69th Legislature in 1985. This act required that physicians and laboratory directors report adult elevated blood lead levels ($>40 \mathrm{~g} / \mathrm{dl}$), and diagnoses of suspected or confirmed asbestosis and silicosis. The act also gave the Texas Board of Health the authority to add other preventable occupational diseases to the list. Later that same year, the Board made acute occupational pesticide poisoning a reportable condition in Texas. Since 1987, the National Institute for Occupational Safety and Health (NIOSH) of the Centers for Disease Control and Prevention (CDC) has provided limited funding for occupational disease surveillance activity in Texas.

Figure 1. Acute Occupational Pesticide Poisoning in Texas, 1993

throughout the state. The active surveillance is conducted using a sentinel provider system which consists of individual physicians, clinics, and hospitals who consent to be contacted by EOEP staff on a regular basis.

Initially, the EOEP concentrated this active surveillance effort in three specific agricultural regions of Texas: the Winter Garden area in south central Texas, the Rio Grande Valley in far south Texas, and the Texas Panhandle. Other agricultural areas of Texas are now included in the active surveillance effort. Sixtythree health clinics, 30 hospital emergency rooms, and 26 physicians participated as sentinel providers in 1993. In addition to contacting sentinel providers, health care providers from all areas of the state report pesti-cide-related illness directly to EOEP.

In 1993, 15 incidents involving 36 workers with acute pesticide poisoning were reported to the Texas Department of Health (TDH); one worker died. The ages of the persons reported with pesticide illness ranged from 21 to 65 years of age. The majority (66%)were of Hispanic descent; all others were white, non-Hispanic. Twenty-six (72%) of the workers were male, and 10 (28\%)were female. Reports of acute occupational pesticide poisoning in 1993 are presented geographically in Figure 1. For three incidents, the county where the exposure occurred could not be determined.

Non-agricultural settings accounted for most (21) of the reported illnesses, including a fire at a landscape company where nine people were exposed. Seven of the nine were volunteer fire fighters. A company employee and his one-year-old daughter (notcounted in the occupational exposure total) were on the premises when the fire occurred. Eleven other workers were exposed in a separate incident involving a structural pest control application in a govern-

Table 1. Exposure in the Agricultural Setting, 1993
Cases Reported

1(F)	Exposure while mixing/loading pesticides
1(FW)	Exposure while moving bags of pesticides
3(1F \& 2 FW)	Exposure from drift during ground application
7(FW)	Exposure from drift during crop dusting
1(F/CD)	Exposure from plane crash while crop dusting
3(FW)	Exposure while working in recently treated fields
Farmer=(F)	Crop Duster=(CD) Farm Worker=(FW)

40 micrograms per deciliter of blood (mcg/dl) in persons 15 years of age or older. All reports are confirmed laboratory blood lead reports. For 1993, the EOEP received 800 reports of elevated blood lead levels for 273 individuals. Because the Occupational Safety and Health Administration (OSHA)requires that employees be tested at two-
ment office building. Sixteen workers who became ill due to pesticide exposure performed agriculture work: two were farmers, one was a farmer and crop duster, and 13 were farm workers. Table 1 shows where the exposure to pesticide occurred in the agricultural setting.

The fatality involved an aerial pesticide applicator who crashed while spraying cotton fields with paraquat. The pesticide spilled on the pilot when the airplane crashed. He died of paraquat poisoning eight days later.

Adult Elevated Blood Lead Levels

Physicians, laboratories, and other responsible parties are required to report to the TDH, all blood lead levels at or above

Figure 2. Distribution of Individuals with Elevated Blood Lead Levels by Age Group: Texas, 1993

Table 2. Distributionof Individuals Reported with Elevated Blood Lead Level Test by Type of Industry: Texas, 1993
$N=273$
198 .Battery Manufacturing
36 Foundry, Smelting, and Refining
15 Unknown
12 Radiator Repair Shop
3 Construction
3 Scrap and Waste Metals
2 Battery Lead Oxide Manufacturing
2 Steel Works and Blast Furnace
1 Metals Reclamation
1 Vehicle Parts and Accessories Manufacturing

In 1993,268 (98\%) of the individuals with reported elevated blood lead levels were male and five (2%)were female. Based on follow-upfor all reported cases, 142 (52%) of the individuals were Hispanic, $75(27 \%)$ were non-Hispanic whites, and 29 (11\%) were AfricanAmerican. Identificationfor race and ethnicity could not be obtained for 27 (10%) of the workers reported. Figure 2 identifies the age grouping of reported workers with elevated blood lead levels. Table 2 shows, by type of industry, the number of individuals reported to have

Table 3. Reported Individuals with Elevated Blood Lead Levels by Type of Occupation, 1993
$N=273$

37	Machine Operators
31	Radiator Repairers
16	Supervisor, Production Operations
16	Furnace, Kiln, and Oven Operators, except food
19	Machine Feeders and Off-Bearers
19	Freight, Stock, and Material Handlers
24	Laborers, not Construction
21	Unknown or Pre-employment Blood Lead Tests
13	Welders and Cutters
10	Hand Painting, Coating, and Decorating Occupations
6	Assemblers
5	Electrical and Electronic Equipment Assemblers
5	Extruding and Forming Machine Operators
5	Miscellaneous Material Moving Equipment Operators
5	Mixing and Blending Machine Operators
4	Inspectors, Testers, and Graders
4	Janitors and Cleaners
4	Miscellaneous Electrical and Electronic Equipment Repairers
4	Industrial Truck and Tractor Equipment Operators
2	Cementing and Gluing Machine Operators
2	Stock Handlers and Baggers
2	Miscellaneous Plant and System Operators
2	Managers and Administrators
2	Handpackers and Packagers
1	Mechanical Engineer
1	Chemist
1	Security Guard, not public service
1	Supervisor of Mechanics and Repairers
1	Painting Contractor
1	Asbestos Removal Worker
1	Lathe and Tuming Machine Set-up Operator
1	Machine Operator
1	Miscellaneous Metal, Plastic, Stone, and Glass Working Machine
1	Fabricating Machine Operator
1	Molding and Casting Machine Operator
1	Heat Treating Equipment Operator
1	Separating, Filtering, and Clarifying Machine Operator
1	Crushing and Grinding Machine Operator
1	Production Inspectors, Checkers, and Examiner

elevated blood lead levels. As in previous years, workers who were employed in battery manufacturingrepresent most of the cases (73\%).Thirty-six workers (13\%)worked in the Foundry-Smelting-Refiningindustry. Radiator repair shop workers comprised 4% or 12 of the workers reported. The remaining industries represented 27 (10%) of the workers. Table 3 shows, by occupation, the number of reported cases of elevated blood lead levels.

Reports of elevated blood lead levels are prioritized on the basis of blood lead level and presence of symptoms. If any of the following conditions are present, the work site is considered high priority and is inspected by local or state health departmentstaff to identify the source of lead exposures on the job:

- An employee's blood lead level is greater than $60 \mathrm{mcg} / \mathrm{dl}$.
- An employee's blood lead level averages $50 \mathrm{mcg} / \mathrm{dl}$ over a six-month period.
- The individual exhibits symptoms of lead poisoning.

Industrial hygiene inspections measure lead levels in the air and examine work practices to assess additional opportunities for worker exposure. Based on these inspections, interventions to reduce worker exposure are suggested (changing work practices, worker education, etc.) and assistance in implementing interventionsis offered.

Asbestosis

Of the 107 cases of asbestosis reported to TDH during 1993, 47 (44\%)were identified by reviewing death certificatesfiled with the TDH Bureau of Vital Statistics. Physicians reported 20 (19%) of the cases; $40(37 \%)$ were identified during medical record review at a Veterans Administration hospital. The distribution of patients by race/ethnicity is shown in Figure 3 and by age group in Figure 4. The age at diagnosis ranged from 26 to 90 years. The medical record for the 26-year-old did not list job duties, but did note that he was in Korea in the military, had symptom onset during the 1950s, and was diagnosed with asbestosis in 1959. The oldestindividual was a retired military officer; no additional employment information was available from his death certificate.

Varied occupations were identified among the individuals reported with asbestosis in 1993. Most of the occupational information was obtained from death certificates. The occupation shown on the death certificate, however, may not have contributed to the asbestos exposure, since the exposure may have occurred years earlier. Among

Figure 3. Distribution of Reported Asbestosis Cases by Race and Ethnicity: Texas, 1993

White, Non-Hispanic 80\%
the types of occupations listed were construction worker, electrician, plumber, pipefitter, engineer, machinist, fireman, laborer, insulator, boilermaker, rigger, sheet metal worker, and welder. Most medical records and physician reports do not include the occupation where the exposure most likely occurred.

In November 1993, a hospital medical record review to identify asbestosis cases was conducted at a Veterans Administration facility. Medical records were selected based on International Classification of Disease (ICD)-9 Code for asbestosis (501)listed on the discharge sum-

Figure 4. Distribution of Reported Asbestosis Cases by Age Group: Texas, 1993

mary. Sixty-seven medical records were reviewed; the diagnosis of asbestosis was identified in 40 of the 67 records. Although occupational information was listed in 12 medical records, none of these occupations were identified as the source of the asbestos exposure.

Silicosis

Forty-two cases of silicosis were reported in Texas during 1993. One individual was diagnosed with both silicosis and asbestosis. Three individuals were diagnosed with silicosis and tuberculosis. In past years most reports of silicosis in Texas were identified during reviews of death certificates. During 1993 nine of the 42 cases (21%) were identified from this review. Ten (24\%)reports were obtained from medical record review of Veterans Administrationfacilities; 23 (55\%)were reported by private physicians.

Table 4. Distribution of Reported Silicosis		
Cases by Occupation, 1993		
26	(62%)	Sandblaster
5	(12%)	Unknown Occupation
3	(7%)	Painter
2	(5%)	Maintenance Worker
1	(2%)	Asphalt Factory Worker
1	(2%)	Grinder/Chipper
1	(2%)	Foundry Supenvisor
1	(2%)	Pipefitter
1	(2%)	Oil Field Roustabout
1	(2%)	Cloth Material Seamstress

Figure 5. Distribution of Reported Silicosis Cases in Texas by Age Group, 1993

Occupationalinformation was available for all except five of the individuals. Table 4 lists the types of occupations reported. The death certificate for the only report of a female worker reported indicated she worked as a cloth material seamstress.

Before 1993 the majority of workers with silicosis were white, non-Hispanic, or AfricanAmerican. In 1993, 25 (60\%)workers with silicosis were white, Hispanic; six (14\%)were African-American; and 11 (26\%)were white, non-Hispanic. Figure 5 shows the age distribution. During 1993 the youngest worker, a sandblaster, was diagnosed at age 24.

Non-Communicable Disease Epidemiology and Toxicology Division (512) 458-7222,458-7269

Pertussis

Pertussis is a highly contagious upper respiratory illness with symptoms that can linger 6 to 10 weeks. As the disease progresses, coughing comes in spasms interspersed with a characteristic "whoop" sound on inspiration of air. In infants less than six months of age, apnea is a common manifestation, and the whoop may be absent. Pertussis is a particularly severe disease in the first year of life, with young infants at the highestrisk of pertussis-related complications. Complications of pertussis include convulsions, emphysema, bronchial conditions, otitis media, pneumonia, weight loss, and encephalopathy. According to the Centers for Disease Control and Prevention (CDC),from 1989 to $1991,69 \%$ of all confirmed pertussis cases in infants in the United States were hospitalized.

In 1993,121 pertussis cases were reported from 38 counties in Texas. The majority of cases occurred in Dallas, Harris, and Bexar counties, with $30 \%, 14 \%$, and 8% of cases reported, respectively. There were no deaths from pertussis in Texas in 1993. Pertussis morbidity markedly increased in July and August, as illustrated in Figure 1. Nationwide 6,586 cases of pertussis were reported. Texas accounted for only 2% of the nation's pertussis morbidity and ranked 17th among all states.

Nearly 90% of all pertussis cases in Texas were under five years of age, with 63% of all cases occurring in children less than one year of age. Age-specific incidence rates for pertussis were 23.9 per 100,000 for children less than one year of age, 2.7 per 100,000 for children 1 to 4 years of age, and 0.4 per 100,000 for children 5 to 9 years of age. Of those children under one year of age, 75% were hospitalized. In comparison,
31% of cases 1 to 4 years of age were hospitalized, and four percent of cases 5 to 9 years of age were hospitalized. This attests to the severity of this disease in infants. Figure 2 depicts the age distribution of pertussis cases as well as hospitalizations due to pertussis.

Of the 121 cases of pertussis in 1993, detailed case information was available for 86 . Of these 85% (73) experienced paroxysms of coughing, 65% (56) an inspiratory whoop, 59\% (51) cyanosis, 59% (51) vomiting, 48% (41) apnea, 23% (20) pneumonia, and one percent (1) seizures.

Figure 1. Reported Cases of Pertussis: Texas, 1993

Fifty-three pertussis patients were of white and Asian descent, 43 of Hispanic descent, and 20 of African-Americandescent. While more cases of pertussis occurred in the white and Asian population, the incidence rate of pertussis was highest in the African-American population, with 9.6 cases reported per one million population for all ages. This was followed by Hispanics with a rate of 8.8 per million, and whites and Asians with a rate of 4.8 per million. The race/ ethnicity of five cases was unknown.

In the current era of controversy concerning the safety and effectiveness of pertussis vaccine, it is increasingly important to understand pertussis epidemiology and the reasons for continuing pertussis vaccination. According to CDC, a primary series of pertussis vaccine provides 70\%-90\%protection against infection, particularly during the first several years following immunization. Given the serious nature of this disease, the overall benefit of pertussis vaccine is great when compared with the risks associated with the disease.

Figure 2. Pertussis Cases and Hospitalization by Age Group: Texas, 1993

Immunization Division (512) 458-7284

Plague

On May 3,1993, the Texas Department of Health (TDH) was notified of a possible human plague case. Automated bacteriologic test procedures at the hospital had identified a Yersinia species from a blood specimen collected April 25,1993. The organism was shipped to the TDH Laboratory, where it was confirmed as Yersinia pestis.

The patient was a 94 -year-old white woman from Kent County. She experienced onset of fever and headache on April 24 and was taken to the emergency room by family members. She presented with fever, headache, body aches, and confusion. On admission her temperature was 103 F , blood pressure was $134 / 70 \mathrm{~mm} \mathrm{Hg}$, pulse was $96 /$ minute, and respiratory rate was 22/minute. Her initial white blood cell count was $16,100 \mathrm{cell} / \mathrm{mm}^{3}$ with 91% polymorphonuclear cells, 5% band forms and 4% lymphocytes. Her hemoglobinlevel was $13.2 \mathrm{~g} / \mathrm{dL}$, hematocrit was 39.3%, and platelet count was $81,000 / \mathrm{mm}^{3}$. Achest x-ray was normal. Initial diagnoses included sepsis, dehydration, and possible pneumonia.

Initially, her treatment included ceftriaxone and rehydration. On the second day of hospitalization, the left side of her neck became tender and swollen. She complained of difficulty in swallowing. Ceftriaxone was discontinued, and she received ampicillin and sulbactam for ten days. The swelling decreased over the next five days. ACT scan of the neck did not identify an abscess or lymphadenopathy. On day four, the hospital laboratory reported the Yersinia species in her blood specimen. Upon subculture, the automated test system identified the organism as Yersinia pestis with a confidence level of 59%. Doxycycline was added to her treatment regimen. Additional testing by separate automated systems identified the bacteria as Yersinia pestis (by two systems) or Yersinia pseudotuberculosis (by one system).

The patient's illness gradually resolved, and she was discharged on May 4. Because no hospital staff members were exposed to blood or body fluids from the patient, no one received prophylactic therapy.

The patient was not able to provide a reliable exposure history. She resided in one of three homes located on a dead end street. One of the houses was vacant. There were several vacant lots and homes within 100 yards of the patient's home. Her next door neighbor, who cuts the grass at all three residences on the dead end street, had not noticed any dead animals on the three properties. The patient owned one cat. Sometime in April, fleas had been noticed on the neighbor's baby granddaughter when she had been placed on the patient's sofa. The patient had not travelled out of her home town for over three months.

An inspection of the patient's household ascertained no current rodent problem, although she had previously trapped two mice and a rat in her home. A desiccated mouse later was found in the home.

The most likely source of exposure for this patient was a flea bite at home since there was evidence of a problem with rodents and fleas at her residence prior to her illness. Additional surveillance indicated the presence of zoonotic plague in the county.

This patient represents the fourth human plague case with exposure in Texas since 1980. The other three cases occurred in 1982,1984, and 1988. The patients resided in Ector, Winkler and Pecos Counties; all were males between the ages of 23 and 41 years. There was one fatality.

The Zoonosis Control Division maintains yearround surveillancefor plague in Texas wildlife. Blood specimens are collected from carnivores, primarily coyotes. Most carnivores are resistant to infection by Y. pestis, but they do seroconvert when exposed to the plague organism and therefore are indicators for plague activity. In 1993, 51 specimens, all from counties within Public Health Region 2, were seropositive. These came from coyotes (40), domestic cats (6), raccoons (2), as well as a skunk, a bobcat, and an opossum.

In March, a Taylor County rancher notified TDH that he had encountered numerous dead and dying fox squirrels (Sciurus niger) on his property. Upon investigation, it was found that the squirrels and their fleas were infected with Y. pestis. This outbreak represents the third recorded squirrel epizootic in the US and the first reported in Texas. Subsequently, as a result of publicity surrounding this die-off, one plague-infected squirrel was collected in Dallas County in May; another was collected in June.

Infectious Disease Epidemiology and Surveillance Division (512) 458-7328,458-7676

Rabies, Human,Case

On November 4,1993, a white 82-year-old man residing in Bowie County, Texas, was admitted to an Arkansas hospital. The previous day, he had begun having difficulty swallowing, speaking, and walking. According to family members, the man had become forgetful and confused during the four to five days prior to admission. He was on no regular medications, had no significant medical conditions, and had been able to work his own farm until he became ill.

On admission the patient could follow some commands and had no motor or sensory deficits, but was hallucinating and uncooperative. He complained to his family that someone was standing on his feet and that people were coming out of the television. Abnormal findings on physical examinationincluded mild elevation of temperature ($100.1^{\circ} \mathrm{F}$), increased muscle tone in his upper and lower extremities, tremors, and decreased reflexes. His white blood cell count was normal except for a differential with 90% polysegmented neutrophils. Examination of cerebrospinalfluid revealed one lymphocyte/ mm^{3}, a glucose level of $60 \mathrm{mg} / \mathrm{dL}$, and a protein level of $42 \mathrm{mg} / \mathrm{dL}$. Computerized tomography (CT) of his brain revealed diffuse atrophy.

Although the admitting diagnosis was cerebrovascular accident, by the second day of hospitalization, tetanus or viral encephalopathiessuch as rabies were considered more likely. At this point, the patient's family reported that he had not traveled out of his immediate surroundings and had no known animal bites.

During his hospitalization the patient had to be pharmacologically paralyzed for paroxysmal muscle activity and required a heating blanket for hypothermia. He died on November 9 after ventilatory support was withdrawn because no brainstem reflexes could be demonstrated. His brain tissue was positive for rabies virus by fluorescent antibody testing. Additional testing using monoclonal antibodies and polymerase chain reaction (PCR)technology implicated a strain of rabies genetically related to the strain associated with the silver-hairedbat.

Two possible routes of infection were identified during the course of an extensive on-site investigation. The living area of the patient's home was found to have openings accessible to bats from the outside. Additionally, upon further questioning, the family recalled that the patient had had a cow that died of an unknown disease three months prior to the onset of his illness.

Fifteen family members and close contacts in Texas received rabies prophylaxis; in Arkansas, 55 medical personnel received prophylaxis. The cost of prophylaxis for both the Texas and Arkansas contacts exceeded $\$ 50,000$.

Infectious Disease Epidemiology and Surveillance Division (512) 458-7328,458-7676

Rabies in Animals

Rabies is a viral zoonosis affecting the central nervous system. The mode of transmission is by saliva containing rabies virus being introduced into an opening in the skin or through mucous membranes, usually via the bite of a rabid animal. Animals considered to be highrisk for transmitting the rabies virus include bats, coyotes, foxes, raccoons, and skunks.

In 1493,533 (5\%) of 11,169 animal specimens tested by the Texas Department of Health were positive for rabies. This number of confirmed cases, a 12% increase over the 471 cases reported in 1992, is the highest yearly total for Texas since 1985 (Figure1).

Rabies in wildlife accounted for 82% of the cases. Skunks and bats, responsible for 28% each of the total cases statewide, continued to be the primary reservoirs. During 1993,151 skunks tested positive for rabies compared with 182 rabid skunks in 1992. Of all skunks tested for rabies, 25% were positive in 1993, and 29% were positive in 1992. During 1993, 150 bats were positive for rabies compared with 69 rabid bats in 1992. Of all bats tested for rabies, 18% were positive in 1993, and 13\% were positive in 1992.

Rabies in domestic animals (18% of all animals tested positive for rabies) continues to be a

Table 1. Rabies in Domestic Animal Species: Texas, 1992 and 1993

Species	$\mathbf{1 9 9 2}$	$\mathbf{1 9 9 3}$
Dogs	56	54
Cats	16	21
Cows	11	11
Horses	6	6
Goats	7	1
Sheep	2	1
Donkeys	0	1
Total	98	95

concern because rabid domestic animals are more likely to come into contact with humans than are rabid wildlife. Tables 1 and 2 compare the numbers of domestic and wildlife rabies cases for the various animal species for 1992 and 1993. In 1992, the greatest number of animal

Figure 1. Confirmed Cases of Animal Rabies: Texas,

Year
rabies cases occurred in March and April. In 1993, September had the highest count due to the increase in rabid bats reported during that month.

Rabies in wild or domestic animals occurred in 110 Texas counties in 1993 (Figure2). More rabies cases (49 bats) were reported from Travis County than any other county. In the last 2 months of 1993, an outbreak of fox rabies occurred in McCulloch County with a total of 7 cases.

Table 2. Rabies in Wild Animal Species: Texas, 1992 and 1993

Species	$\mathbf{1 9 9 2}$	$\mathbf{1 9 9 3}$
Skunks	182	151
Bats	69	150
Foxes	33	42
Coyotes	70	71
Raccoons	7	20
Other	12	4
Total	373	438

Figure 2. Oonfirmed Cases of Animal Rabies (all species) by County: Texas, 1993

The canine rabies epizootic, which began in 1988 in South Texas, continued through 1993; 69 coyotes and 42 dogs tested positive for rabies. Ninety-seven percent of all rabid coyotes re-
ported and 96% of all rabid dogs reported were from the following 13 South Texas counties: Brooks, Duval, Hidalgo, Jim Hogg, Jim Wells, Kenedy, Kleberg, La Salle, Nueces, Starr, Webb, Willacy, and Zapata. A rabid raccoon with the canine strain of rabies virus was recorded in CameronCounty in May 1993. The testing of a rabid coyote in La Salle County in November 1993 demonstrated the continual northward movement of the epizootic.

In response to this outbreak, the Oral Rabies Vaccination Project (ORVP) for coyotes in South Texas was initiated. The goal of the ORVP is to create a zone of vaccinated coyotes along the leading northern edge of the epizootic. This project targets wild animals because they are the primary reservoir for rabies. Immunization of coyotes will be accomplished by aerial distribution of a bait containing rabies vaccine over approximately a 15,200 square mile area.

Zoonosis Control Division (512) 458-7255

Rabies Postexposure Treatment in Humans

Human rabies is a fatal disease that is completely preventable. It is transmitted through exposure of mucous membranes or broken skin to the saliva of a rabid animal. If exposure occurs, the disease can be prevented by prompt administration of rabies immune globulin (RIG) and rabies vaccine (RV). In the United States, two types of RV are in use: human diploid cell vaccine (HDCV) and rabies vaccine, adsorbed (RVA). They are equally effective, and each is given in the same way.

Postexposure prophylaxis (PEX) for rabies generally is given as a single dose of RIG and a series of five doses of RV. If a person has previously received PEX or been immunized against rabies because of occupational risk of exposure to the disease (veterinary or laboratory workers, animal control officers, spelunkers, etc.), the PEX regimen consists of only two doses of RV, without the RIG.

The number of exposures to rabid or potentially rabid animals in Texas is unknown. The Texas Department of Health (TDH) Zoonosis Control Division receives reports on human and animal exposures to proven rabid animals, but many other people are started on PEX due to sus-

The number of exposures in Texas can be estimated through TDH data on the amount of rabies biologicals (RIG and RV) used in the state. Because it does not account for biologicals given through the private sector, however, this data provides an underestimate of total exposures. Since RIG is given only for PEX, and as a single dose, it is a better indicator of exposures than the number of RV doses administered. However, this data also underestimates the actual number of exposures because this total does not include previously immunized persons (for whom RIG is not indicated) who are exposed to rabies.

The rates of public health region use of RIG for 1989-1993 are shown in Figure 1. Comparisons between regions may be misleading because differences in medical practices and population demographics could result in differences in the proportion of all RIG provided by the state. However, comparisons within a region over a time period should reflect changes in the prevalence of animal rabies, as well as public and professional awareness and concern about rabies in that region. During the time frame shown in Figure 1, the major changes in animal rabies epidemiology have been an increase in
pected exposures. Treatment also may be started on PEX because the animal was not available for testing or the submitted specimen was unsuitable for testing. Even if the cat or dog involved in the incident is being quarantined for a 10- \boldsymbol{y}_{0} day period, treatment may be begun if other factors indicate a likelihood of rabies infection.

Figure 1. Persons Started on PEX/100,000 Population

bat rabies in PHR 1 in 1993 and an epizootic of canine rabies in PHR 8 that started in 1988 and continues to the present. There is a corresponding rise in RIG use in PHR 1 in 1993. RIG use in PHR 8 remained high throughout the five-year period. The 4.4 fold higher use of RIG in this region over the average of the other regions undoubtedly is related to the canine rabies epizootic.

In PHR 8 tests results for 408 animals were positive for rabies from 1989 through 1993. These animals were responsible for 646 human exposures (190 in 1989, 78 in 1990, 53 in 1991,

Figure 2. Regional Map Prior to March 1993

Zoonosis Control Division (512) 458-7255

St. Louis Encephalitis

St. Louis encephalitis (SLE) is an arboviral infection caused by a flavivirus. The natural cycle of the disease in the United States involves wild birds and mosquitoes in the genus Culex. In Texas the disease occurs in the coastal regions during the warmer months of the year. Although most human infections are inapparent or asymptomatic, symptoms in humans can range from a mild febrile illness to aseptic meningitis and severe encephalitis. Fever and headache are frequently the first and most persistentsymptoms. Increased age is the most significant risk factor for developing neuroinvasive disease.

In 1993 seven cases of SLE were reported in Texas. The patients resided in Brazoria County (one), Denton County (one), Galveston (one), Harris County (one), and Nueces County (three). Ages ranged from 19 years through 84 years. Five were males. The patient from Galveston County had onset of illness in July. The other six cases experienced onset of illness in August. All seven cases were hospitalized. None died.

The Texas Gulf Coast is a recognized endemic area for St. Louis encephalitis. Six of the patients resided in this area. None had traveled outside of Texas in the two weeks prior to illness. The patient from Denton County had recently traveled to Smith County, Texas. Denton and Smith Counties are not considered endemic areas for human SLE, but SLE virus activity in avian and mosquito populations has been identified in areas outside the Gulf Coast. Virus was detected in 19 pools of mosquitoes in 1993: 12 from Nueces County, six from Jefferson County, and one from El Paso County. At the Texas Department of Health (TDH), antibody to the SLE virus was detected in sera from 53 chickens. Thirty-three reactive specimens were submitted from Dallas County, 17 from Lubbock, and three from Galveston.

Infectious Disease Epidemiology and Surveillance Division (512) 458-7328,458-7676

Salmonellosis

A total of 1,924 cases of salmonellosis were reported in Texas in 1993, the lowest number of cases since 1978. The annual statewide incidence rate was 10.7 cases per 100,000 population. Figure 1 illustrates the decline of salmonellosis rates since 1984. The geographic distribution of salmonellosis by county is shown in Figure 2. The actual numbers of cases in the individual counties and their corresponding incidence rates are provided in the Regional Statistical SummariesSection.

Children five years of age and under constituted 28.3% of all cases, and their incidence rate of 35.7 cases per 100,000 population was the highest rate for any age group. The incidence of salmonellosis was higher among Hispanics, (14.5 per 100,000) than among Afri-can-Americans (6.1) or whites (5.9). Incidence rates for all races decreased.

The serotype was identified and reported for 63.4% of the cases. Of the 1,220 cases for which this information was reported, 17.1% were

Figure 2. Incidence of Salmonellosis by County - 1993

Salmonella typhimurium, 8.4% were S. newport, and 7.2% were S. enteritidis.

Three outbreaks of salmonellosis were reported to the Texas Department of Health Infectious Disease Epidemiology and Surveillance Division in 1993. Altogether these outbreaks accounted for $152(7.9 \%)$ of the salmonellosis cases reported. S. enteritidis was identified as the etiologic agent in all three of these outbreaks. Most of the cases (145) were due to two outbreaks in El Paso county associated with the same fast-food Chinese restaurant. Both of these outbreaks were investigated by the local health department and a CDC Epidemic Intelligence Service (EIS) officer. Egg rolls were identified as the contaminated food item, with egg roll preparation implicated as the point of contamination. CDC and the United States Department of Agriculture (USDA) followed the eggs back to the source farm but were unable to culture S. enteritidis from any of the more than 200 environmental samples collected at that farm. The third outbreak occurred in Montague County and was associated with a barbecue restaurant.. This outbreak resulted in seven reported cases; while a particular food item was not identified, the owner/chef at the restaurant was culture-positivefor S. enteritidis.

Infectious Disease Epidemiology and Surveillance Division (512) 458-7328,458-7676

Sexually Transmitted Diseases

Major changes in the trends of syphlis, chancroid, chlamydia, and gonorrhea were noted in 1993.

Syphilis

While reported cases of syphilis continue to decline, new trends are emerging in the profile of the population acquiring th s sexually transmitted disease (STD). The numbers of reported cases declined from 10,796 in 1992 to 9,904 in 1993. Reported syphilis cases hit a 40-year high in 1991 when 13,297 cases were reported. Although the number of syphilis cases are declining, a larger share of cases is being reported among women (Figure 1). Previously, the male/female ratio ranged as high as 5 to 1 and 3.5 to 1 males per female, reflecting the high prevalence of syphilis cases among gay men, especially in the 1970s and early 1980s.

The ratio began to decrease as gay men changed their behaviors, practicing safer sex. The syphilis epidemic of the late 1980s was concentrated in heterosexual men and women who used
by providing a portal of direct entry for the virus. The decline in the number of reported primary and secondary syphilis cases among females has been less notable than the decline among males (Figure 2). The disparity may be an early warning that the 1992 and 1993 increase in the female proportion of total AIDS cases is also likely to continue.

Controlling syphilis is becoming more difficult in some settings. In the last three years, five separate outbreaks of syphilis have been reported in rural Texas counties. Four of the five outbreaks involved the use of crack cocaine and the exchange of sex for drugs by addicted woman. Limited public health resources in rural areas must cover a wider area than urban locations, making the control of rural syphilis much more problematic. Sexually transmitted disease clinics may not be held regularly in rural areas and patients may wait weeks to see contract physicians. Efforts to interrupt transmission by partner notification are often conducted by public health workers who must cover 20 or more counties.
crack cocaine. During the last several years, the ratio of men to women with infectious syphilis (primary and secondary stages) has been approximately 1.5 to 1 . In 1993 the male-to-female ratio was 1.12 to 1 . If this trend continues, more women than men will have syphilis in the next several years.

The ratio is important for two reasons. First, an increasing percentage of women with syphilis could also lead to an increase in congenital syphilis cases. Second, the chancre of syphilis is known to facilitate the transmission of HIV

Figure 1. Infectious Syphilis in Texas: Proportion of Cases by Gender

Figure 2. Primary and Secondary Syphilis in Texas by Gender

Chlamydia and Gonorrhea

During 1993 chlamydia remained the most commonly reported sexually transmitted disease in Texas. While reported cases of gonorrhea declined from 35,517 in 1992 to 30,122 in 1993, chlamydia cases rose from 39,728 in 1992 to 43,874 in 1993. Nevertheless, several important factors make it likely that chlamydia in Texas is under-diagnosed. First, most of the chlamydia testing performed involves women attending family planning and prenatal clinics. The male partners of these women usually are not examined or tested. Only 14% of the chlamydia cases reported in 1993 were among men. Second, some large and mediumsized cities are not yet providing chlamydia testing in STD clinics and other public health facilities. The number of, chlamydiacases is expected to increase as more men are tested and as the number of clinics able to provide testing and diagnose chlamydia increases.

Bureau of HIV and STD Prevention (512) 458-7463

Shigellosis

In 1993, 4,581 cases of shigellosis were reported in Texas, an increase of over 1,000 cases from 1992 and the highest number of cases ever recorded. The annual statewide incidence rate was 25.5 cases per 100,000 population, another all-time record. The distribution of shigellosis by region is illustrated in Figure 1. Figure 2 shows a map of the incidence rates by county. (See the charts in the Regional Statistical Summaries section for the actual numbers of cases in the individual counties and their corresponding incidence rates.)

Children five years of age and under constituted 41.5% of all cases, and their incidence rate of 105.4 cases per 100,000 population was the highest rate for any age group. The incidence of shigellosis was higher among Hispanics (40.9 per 100,000) than among African-Americans (18.2) or whites (13.2). Incidence rates for all racesincreased.

Figure 2. Incidence Rate of Shigellosis by County, 1993

Victoria County, and a 37-year-old from
Williamson County. Serotypes were not reported for either case.

Infectious Disease Epidemiology and Surveillance Division (512) 458-7328,458-7676

Smoking: Access of Minors to Cigarette Vending Machines

The sale of tobacco products to persons younger than 18 years of age has been prohibited by law in Texas since September 1989.* This law requires cigarette vending machine owners to post signs on their machines stating the law and the consequence: that merchants convicted for selling tobacco products to underaged persons may be fined up to $\$ 500$. A city ordinance passed in August 1991 in Arlington, Texas, required installation of electronic locking devices on all cigarette vending machines. These devices render the vending machine inoperable until the store owner electronically unlocks the machine on customer request. To determine the access of minors to cigarettes through vending machines, the Texas Department of Health (TDH) conducted a study in Arlington and five neighboring communities in October 1993. This report summarizes the study findings.
tempted to purchase cigarettes from the vending machine. Minors were instructed to answer, if asked, that the cigarettes were for themselves. Following the purchase attempt, the minor and the adult observer completed a questionnaire.

Figure 1. Type of Establishments with Cigarette Vending Machines in the Arlington, Texas Area $\mathrm{N}=116$

Restaurant

21\%

* Gas station, motel lobby, recreational facility, food store

In September 1993 TDH obtained a list of business establishments with cigarette vending machines owned by the largest cigarette vending company in the Arlington area. A total of 116 establishments were identified in the study area; 59 (51\%) machines were in establishments considered easily accessible to minors (i.e., restaurants, gas stations, motel lobbies, food stores, and recreational facilities) (Figure 1). Four investigative teams collected data from 42 of the 59 sites. Each team consisted of one adult paired with one minor (aged 15-17 years). The minors made one attempt to purchase cigarettes at each of the 42 establishments. During each purchase attempt, the adult entered the establishment before the minor and asked the employee for street directions. The adult then observed while the minor entered and at-

While attempting to purchase cigarettes from vending machines, no minors were challenged by business owners. Of 42 attempts, 41 were successful. Of the 41 sites where purchase attempts were successful, 24 (59\%)were located within one-half mile of a school. Thirty-five purchase attempts (83%) occurred in restaurants; however, cigarettes were bought at every type of establishment where purchases were attempted. Warning signs prohibiting cigarette sales to minors were posted on vending machines in 32 (76%)establishments. Of 16 vending machines located in business establishments in the city of Arlington, only one was equipped with an electronic locking device as required by the Arlington ordinance. The single unsuccessful purchase attempt occurred at this electronically locked machine.

For the 42 vending machine sites where a purchase was attempted, questionnaire results were as follows:

- Did anyone object to minor entering establishment? $100 \%=$ No
- Did anyone object to minor buying cigarettes?

$$
100 \%=\mathrm{No}
$$

- Was sign posted warning against sales to minors? $24 \%=\mathrm{No}$
- Were other minors present inside establishment? $46 \%=$ Yes
- Median distance from entrance to cigarette machine:

$$
3 \text { yards }
$$

- Is machine visible by an adult at all times? $43 \%=$ No
- Were other products vended in same room or hallway?
$21 \%=$ Yes
- Did machine have a working locking device?
$95 \%=\mathrm{No}$
- Did minor successfully purchase cigarettes?
$98 \%=$ Yes
The findings in this reportindicate that, despite laws prohibiting cigarette sales to persons under 18 years of age, minors readily purchased cigarettes from vending machines in Arlington and five neighboring communities. The only failed purchase attemptin this study resulted from a vending machine equipped with a remote-controlled locking device. Unfortunately, compliance with legislation requiring these devices has been minimal ${ }^{1}$. The finding that only one of 16 vending machines in the city of Arlington was equipped with the device is similar to findings of other studies showing the ineffectiveness of ordinances requiring lockingdevices. ${ }^{1}$

The findings in this report are subject to at least two limitations. First, data in this report were obtained for only one vending machine company in the Arlington area because the Texas Department of the Treasury does not require vending machine companies to specify the locations of their machines. Second, because of time constraints during the study, data were not collected for 17 establishmentsconsidered easily accessible to minors; however, sites included in the analysis probably do not differ from sites that were not included.

Approximately 82% of adult smokers report that they first tried a cigarette by age 18 years and 53% were daily smokers by that age. ${ }^{2}$ The initiation rate for smoking increases rapidly after age 11 years. ${ }^{3}$ A 1989 survey of 4,400 high school students in Texas found that 55% of 12-year-olds had already tried cigarette smoking. ${ }^{4}$ Because vending machine sales are not monitored actively by adults, cigarette vending machines can be an important source for younger adolescents (i.e., aged 12-15 years), who are more likely than older adolescents (i.e., aged 16-18 years) to be refused an over-thecounter cigarette sale. ${ }^{5}$ Studies indicate that younger adolescent smokers are more likely than older adolescent smokers to buy cigarettes from vending machines. ${ }^{6,7}$

Unregulated cigarette vending machines may facilitate initiation of smoking among younger adolescents; therefore, more effective regulation of these sales may be an important preventive measure. Prevention of adolescentsmoking may be enhanced by the recently enacted Synar Amendment to the Alcohol, Drug Abuse, and Mental Health Administration (ADAMHA) Reorganization Act." The Synar Amendment requires that states demonstrate effective prohibition of the sale of tobacco products (including cigarettes from vending machines) to persons younger than 18 of age as a condition of receiving full ADAMHA block grant funding. As a

[^0]result of this study, the Arlington City Council approved an ordinance on January 4,1994, prohibiting cigarette vending machines in all business establishments that admit persons younger than 18 years old.

References

1. Forster JL, Hourigan M, Kelder S. Locking devices on cigarette vending machines: evaluation of a city ordinance. American Journal of Public Health 1992;82:1217-9.
2. US Department of Health and Human Services. Preventing tobacco use among young people: a report of the Surgeon General. Atlanta: US Department of Health and Human Services, Public Health Service, CDC, National Center for Chronic Disease Prevention and Health Promotion, Office on Smoking and Health, 1994.
3. Kandel DB, Logan JA. Patterns of drug use from adolescence to young adulthood:
I. Periods of risk for initiation, continued use, and discontinuation. American Journal of Public Health 1984;74:660-6.
4. Texas Department of Health. University of Texas Health Science Center: Texas Tobacco Survey, 1989-a survey of 7th, 8 th, 10th, and 12th graders in public schools in Texas. Austin, Texas: Texas Department of Health, 1989.
5. Forster JL, Hourigan M. McGoven P. Availability of cigarettes to underage youth in three communities. Preventive Medicine 1992;21:320 8.
6. Allen KF, Moss AJ, Giovino GA, Shopland DR. Pierce JP. Teenage tobacco use: data estimates from the teenage attitudes and practices surveyUnited States, 1989. Hyattsville, Maryland: US Department of Health and Human Services, Public Health Service, CDC,NCHS, 1992.
7. National Automatic Merchandising Association. Findings: study of teenage cigarette smoking and purchase behavior. Chicago: National Automatic Merchandising Association, 1989.

Bureau of Chronic Disease Prevention and Control (512) 458-7200

Tetanus

Seven cases of tetanus were reported in Texas in 1993. The patients ranged in age from 50 to 86 years of age; median age was 61 years. Only one death due to tetanus occurred in 1993, resulting in a case-fatality rate of only 14%. Tetanus is a serious neurologic disease which results in lengthy hospitalization, usually in intensive care units. Consequently, the economic impact can be staggering. The six tetanus survivors in 1993 required hospital stays ranging from 29 to 65 days; median hospital stay was 40 days.

Six of the patients acquired their tetanus infections as the result of injuries reported as lacerations (3), abrasions (2), and puncture (1).Two of the injuries were associated with lawn mower accidents, two patients fell and suffered lacerations, one was involved in an auto-pedestrian accident, and one stepped on a piece of wood. One case was associated with an infected chronic woundwhich led to the amputation of the patient's leg.

Precise immunizationhistori.es are difficult to obtain and verify in the course of a tetanus case investigation. Because of the serious nature of the disease, patients are often unable to communicate; they may require mechanical ventilation, or the severe muscle spasms of the jaw may leave them unable to speak. Furthermore, many elderly patients simply cannot remember whether they have been immunized in the past. In Texas two of the seven patients with tetanus in 1993 had never been immunized against the disease. Three reported some previous immunization, yet they could not recall the exact number of doses; these three did, however, report that it had been ten or more years since they had received the last dose of tetanus toxoid. Two of the patients had received only one dose of tetanus toxoid during their lifetimes, but both were immunized within the year preceding onset of symptoms. Included in the latter group was an 86-year-old woman who died five days after onset of symptoms.

Immunization Division (512) 458-7284

Tick-borne Diseases

Lyme Disease

Lyme disease, caused by the spirochete Borrelia burgdorferi, continues to be the most prevalent tick-borne disease in Texas, although the number of reported cases decreased by more than half between 1992 and 1993. Of the 131 possible cases in 1993, 48 ($\mathbf{3 7 \%}$) met CDC's surveillance case definition: physician-diagnosederythema migrans (EM) at least five cm in diameter or rheurnatologic, cardiac or neurologic manifestations with a positive laboratory test. Twenty (42%) of the 48 patients were male; 28 (58%) were female. Ages ranged from 6 to 76 years, although most were 30 to 50 years old.

Twenty-five (52\%)patients recalled a tick bite prior to onset of illness; two (4\%)reported flea bites. Six patients were exposed outside of Texas. Eighteen (38%) of the 48 patients had physician-diagnosed EM; eight of these had multiple lesions. Onset of EM occurred most often in the warmer months of the year, and lesions usually were found on the torso or leg area of the body.

Cardiac abnormalities-including conduction defects, heart block, and ventricular dysfunctions - were reported for three patients.

Bell's palsy was reported for only two patients; one had a unilateral paralysis, the other, bilateral. Other neurologic manifestations were reported for 20 (42%)persons. These included sensory loss/neuropathies, chronic fatigue, encephalitis, meningitis, confusion/memory loss, vision impairment, limb weakness, and vertigo/ dizziness.

Migratory joint pain was reported for 21 (44\%) patients; 18 (38%)had swelling of the joints. The knees, ankles, wrists, elbow, fingers, and shoulders were most often affected.

Rocky Mountain Spotted Fever

Seven cases of Rocky Mountain spotted fever were confirmed in Texas in 1993, although two of the patients actually received their tick bites in Oklahoma. The other patients lived in Dallas, Galveston, Hunt, Smith, and Taylor counties. One case occurred each month from March through June and one in August. Two cases had onset in July. There were five males and two females. Three were children, ages three, 13 , and 14 , and four were adults between the ages of 31 and 41 . Six patients were hospitalized. One case was serious enough that the patient became comatose and required amputation of both of his legs. There was one death.

Each patient experienced fever, myalgias, and a rash. Five patients had headache, nausea and/ or vomiting, anorexia, and malaise. Other symptoms included lymphadenopathy (three), conjunctivitis (two), photophobia (one), jaundice (one), and diarrhea (one). In two cases, diagnoses of Rocky Mountain spotted fever were confirmed immunohistologically. Rickettsia rickettsii, the etiologic agent, was detected in tissue biopsies utilizing immunofluorescentor immunoperoxidase procedures. In addition, spotted fever group rickettsiae were detected in the liver of one of these patients using polymerase chain reaction (PCR) technology. The remaining cases were confirmed serologically using either enzyme immunoassay (EIA) or immunofluorescentantibody (IFA) techniques.

Tularemia

There were five cases of tularemia in 1993: four males and one female. Ages ranged from 10 to 56. Two of these cases followed tick bites; the others were associated with wild animals, including jack rabbits and wild hogs. In four cases, diagnoses were confirmed by serologic tests. The remaining case was confirmed by isolation of Francisella tularensis from an ulcerated lesion on the patient's finger.

Human Ehrlichiosis

Only one case of human ehrlichiosis was detected in 1993. The patient, a 42 -year-old male from Travis County, had onset of illness in June, three to four weeks after receiving numerous tick bites. Symptoms included malaise, fever, severe chills, headache, myalgias, arthralgias, and a maculopapular rash. His antibody titer to Ehrlichia chaffeensis was $\geq 1: 512$. Ten months later his titer dropped to $<1: 16$.

Most cases of human ehrlichiosisin the United States have been caused by E. chaficeensis, a rickettsial organism with a tropism for leukocytes. The first case was reported from Arkansas in 1987. Since then, the disease has been reported from at least 27 states; usually these have been Southeastern or South Central states where the lone star tick, Amblyomma
americanum, is present. Human ehrlichiosis is not yet a reportable disease, so the true prevalence of infectionis unknown. More than 320 cases have been identified nationwide. In Texas 26 cases were detected between 1986 and 1993.

Clinically, human ehrlichiosisis similar to

Rocky Mountain spotted fever. After an incubation period of seven to 21 days, the patient presents with an acute febrile illness. Symptoms may include fever, headache, anorexia, myalgia, chills, nausea, and vomiting. A rash is seen approximately 30% of the time.
Leukopenia, thrombocytopenia, and elevated hepatic aminotransferase levels are relatively common. The mortality rate appears to be about one percent. Laboratory confirmation of human ehrlichiosis requires a fourfold increase or decrease in antibody titer between paired serum specimens.

Prevention

Lyme disease, Rocky Mountain spotted fever, human ehrlichiosis, tularemia, and most other tick-borne diseases can be prevented in the same manner: wear protective clothing, use effective repellents or acaricides, check for ticks regularly when in tick-infested areas, and keep pets free of ticks. Ticks that bite humans or their pets may be submitted to the Texas Department of Health (TDH) Laboratory for identification and analysis. In 1993, 9,949 ticks were submitted to TDH. When examined for spotted fever group rickettsia, 319 (3.2\%)
Figure 1. Total Cases of Lyme Disease, Rocky Mountain Spotted Fever and Tularemia: Texas 1980-1993

were infected, including A. americanum, Dermacentor variabilis (Americandog tick), Rhipicephalus sanguineus (brown dog tick), and Ixodes scapularis (blacklegged tick). Also, 6,495 were tested to determine whether they were infected with Borrelia spirochetes; 17 (0.3%)of these, all A. americanum, were positive. Yearly totals of Lyme disease, Rocky Mountain spotted fever, and tularemia in Texas, 1980-1993, are graphically illustrated in Figure 1.

Infectious Disease Epidemiology and Surueillance Division (512) 458-7328, 458-7676

Traumatic Brain Injuries in Texas

May-December 1993

Traumatic brain injuries are the most common severe disabling injury in the United States. Approximately 500,000 new cases occur annually.

In the spring of 1993, the Texas Department of Health (TDH) Injury Prevention and Control Program began working with the Texas Head Injury Association, the Alliance of Head Injury Rehabilitation Facilities, and the Southwest Regional Brain Injury Rehabilitation and Prevention Center to design and implement a traumatic brain injury (TBI) registry to collect, analyze, and report data on the occurrence of TBIs in Texas. In May of that year, 28 rehabilitation facilities agreed to participate in the surveillance project. By December, that number increased to 45 sentinels and included: 39 rehabilitation facilities, five acute care hospitals, and the Louisiana Health Department.

From May through December 1993, 132 traumatic brain injuries were reported to the TDH Injury Prevention and Control Program. Cases were reported by 14 of our 45 sentinel facilities,

Figure 1. Traumatic Brain Injuries by Age: Texas, May-December 1993*

$N=132$
*Voluntary reporting
Injury Prevention \& Control Program, Texas Dept of Health (2/94)

Figure 2. Traumatic Brain Injuries by Etiology: Texas, May-December 1993"

Of the 132 injured cases, 92 (70%) were male. The racial/ethnic distribution of the cases was: 77% (101)white, 17\% (23) Hispanic, 5\% (7)African-American, and <1\% (1) other. Ethnicity was self-designated by the patient. Although the ages ranged from one to 93 years, 76% were under 40 years of age (average age 32 years). See Figure 1 for additional data regarding age.

Etiologically, 88 (67\%) of the injuries were motor-vehicle related. These MVR injuries involved 55 individualsinjured in automobiles, four in pickup
trucks, seven on motorcycles, three on bicycles, four in miscellaneous vehicles, and 15 on foot. Information on seat-belt and helmet use was known for 49 cases. Nearly half $(49 \% ; 24 / 49)$ of these individuals were not using appropriate safety equipment. The etiologies of the 44 injuries that did not involve motor vehicles included: 26 (20%)due to falls, 15 (11% \%)ue to violence [six gunshot wounds (GSWs), nine assaults other than GSWs], two ($<2 \%$) to sports/recreation, and one due to an unknown cause (Figure2).

The type and severity of injury were reported for 129 and 114 cases, respectively. The vast majority $(93 \%, 120 / 129)$ of the TBIs were "closed brain injuries." Seven (5\%)were reported as "open brain injury, penetrating," and two ($<2 \%$) as "open brain injury, non-penetrating." Over half $(54 \%, 61 / 114)$ of the cases sustained severe TBIs; 24 (21\%) sustained moderate TBIs, and 29 (25%) sustained mild TBIs.

Intentionality was reported for 122 cases. Seventeen (14\%)injuries were categorized as "intentional." Of these, three were self-inflicted.

Information about alcohol and drug involvement was reported for 100 (76%) and 95 (72\%) of the cases, respectively. Thirty were alcoholrelated; four were drug-related. The drugrelated cases involved cannaboids (2), cocaine and benzodiazipine (1), and unspecified (1).

Information on whether the injury occurred on the job was reported for 116 (88\%) individuals; 12 (10\%)sustained work-related injuries. Nine injuries resulted from falls, two from motorvehicle collisions, and one from an assault with a pipe by a co-worker.

Injury Prevention and Control Program (512) 458-7266

Traumatic Spinal Cord Injuries in Texas

In 1993,298 Texans sustained traumatic spinal cord injuries (SCIs). SCIs were reported to the Injury Prevention and Control Program from approximately 60 hospitals and rehabilitation facilities under the voluntary SCI surveillance system. In addition, state health departments of Colorado, Louisiana, and Oklahoma contributed case reports of Texans injured or treated in these states. Hospitals and rehabilitation facilities were recruited from across the state and from each major population center.

Eight percent (25) died from their injuries during treatmentin the hospital, while 29\% (84) entered long-term rehabilitation programs. The ages of those injured ranged from less than one year to 93 years (mean of 34 years, median of 29 years, mode of 16 years). Fiftyone percent $(151 / 298)$ of injuries were to people under 30 years of age (Figure 1). Nineteen percent (55) of the injured were 18 years of age and younger. Males accounted for 72% (215) of injured Texans. The racial/ethnic distribution of injuries is as follows: 54% (162) white, 28% (83)Hispanic, 15\% (46) African American, 1\% (4) Asian, and 1\% (3) other/unknown.

Figure 1. Percent sf Spinal Cord Injuries by Age Group: Texas Residents, 1993

$N=298$
Age Group

As Figure 2 illustrates, other mechanisms accounted for the remaining 54% (162) of injuries. Of these, 43% (71) were due to assault, 41% (66) due to falls, seven percent (12) due to diving, and five percent (8) due to falling objects. Gunshots accounted for 86% of assaults. Overall, gunshots accounted for over one in every five (22%) SCIs.

Intent of injury was known for 94% (279) of incidents. Twenty percent (57) of these were categorized as "intentional" (i.e., suicides and assaults) (Figure3).

Twenty-fourpercent (73) of injuries were re-

Motor-vehicle-related(MV) injuries accounted for 46% (136) of spinal cord injuries to Texans (Figure2). Of these, 71% (96) of individuals were injured as automobile occupants, $\mathbf{1 1}$ as occupants in pickup truck cabs, three as passengers in pickup truck beds, 11 in motorcycle crashes, nine in pedestrian-vehicle crashes, two in bicyclist-vehicle crashes, and three in commercial vehicle incidents. Safety belts, child restraints, airbags, or helmets were not used in 52% of MV-related injuries, while use of restraints was not known or reported in an additional 20% of cases.

Figure 2. Spinal Cord Injuries by Etiology: Texas Residents, 1993

$N=298$
to the TDH Injury Prevention and Control Program. Six percent (49) of these Texans died in the hospital during treatment, while another 25% (204) entered longterm rehabilitation programs. MV crashes accounted for 48% of SCIs, while gunshot wounds accounted for 20% of SCIs. Seventy-six percent of all SCIs occurred to males.

Information on type and extent of injury was available for 96% (285) of cases. Of these, 53% (152) resulted in paraplegia, and 47% (133) resulted in quadriplegia. The most severely injured persons (i.e., injuries to neck resulting in total loss of sensation and movement below the injury) accounted for 18% (53) of cases of known severity.

The average length of stay for acute-care hospital patients was 18 days (median of 10 days).

Since the beginning of the voluntary traumatic spinal cord injury surveillance effort in January1991,817 Texans have been reported $\quad \mathrm{N}=298$

Injury Prevention and Control Program (512) 458-7266

Figure 3. Intent of Action Resulting in Spinal Cord Injury: Texas Residents, 1993

Tuberculosis

The annual number of new tuberculosis (TB) cases in Texas declined between 1953 and 1984 from 3,252 to 1,762 cases. Since 1984 an upward trend in cases of TB has occurred. In 1993, 2,393 cases (13.3 cases per 100,000 population) of TB were reported to the Texas Department of Health (TDH), Tuberculosis Elimination Division. The 1993 total reflected a decrease of 4.6% from 1992. Texas cases accounted for 9.5% of the total United States cases.

Mycobacferium tuberculosis, the agent that causes TB , is an acid-fast bacillus that is an obligate

Compared with 1992, there was a 18.9% decrease in 1993 in cases among children aged less than four years and a 34% decrease among children aged 5 to 14 years. The greatest increase in TB cases, however, occurred in young adults aged 15 to 19 years and adults aged 45 to 54 years, particularly among African-Americans. Of the 2,393 reported cases of TB in 1993, 163 occurred in children aged less than 15 years, which represents 6.8% of total cases reported. Overall, most children are at very low risk for tuberculosis infection and disease. However, children with prolonged exposure to adult aerobe. The most effective mode of transmission is airborne through the inhalation of droplet nuclei, which are aerosolized by sneezing, coughing or talking.

As shown in Table 1, racial and ethnic minorities accounted for the majority of the cases. Texas residents who were born in foreign countries accounted for 20% of the total cases. The population groups most at risk for M. tuberculosis are the following:

| Figure 1. Reported TB Cases by Race/Ethnicity in |
| :--- | :--- | :--- | :--- |
| Texas - 1993 |

- foreign-born persons
- homeless persons
- users of intravenous or other street drugs
- persons who have medical conditions which increase TB susceptibility (e.g., HIV infection and diabetes)
- health care workers from areas where TB is prevalent
- current or former residents of institutions such as prisons or nursing homes

A shared characteristic of many high-risk groups is that the living conditions of its members often are crowded and generally conducive to the spread of airborne infections such as TB. In densely populated prisons, transmission risks are increased, especially in susceptible subjects. Immigration and HIV infection have been important factors in increasing the number of cases in Texas, but are by no means the only factors. Many of our new TB patients do not belong to specific high-risk groups, but probably were infected due to exposure to a highrisk group member who had TB.
members of the high-risk groups listed earlier also are at relatively high risk. Table 2 illustrates the distinct differences in incidence rates of TB by age group and race/ethnicity.

For centuries TB has been recognized as being more common among persons whose health is compromised in any way. Conditions which may promote the contraction of TB are malnutrition, hematological and reticuloendothelial malignancy, solid tumors, corticosteroid therapy, diabetes mellitus, end-stage renal disease and human immunodeficiency virus (HIV) infection. Among tuberculous-infected individuals, HIV immunosuppression is the greatest known single risk factor for developing TB. TB has re-emerged as a major public health threat in the United States, particularly in areas where HIV infection is prevalent. A person with M. tuberculosis infection and without HIV infection has a 10% lifetime risk of developing active TB whereas an HIV-infected person with M. tuberculosis infection has a 8% annual risk.

Figure 2. TB Cases by Age and Race/Ethnicity: Texas, 1993				
Age in Years	Total Cases	White*	Hispanic	African- American
0-4	103	11	65	27
5-9	38	7	23	8
10-14	22	0	18	4
15-19	58	15	28	15
20-24	136	41	67	28
25-34	459	132	162	165
35-44	528	181	149	198
45-54	368	157	105	106
55-54	249	119	89	41
65+	432	179	172	81
Total	2,393	842	878	673
*White non-Hispanicincludes AmericanIndian, Alaskan native, Asian and Pacific islanderpopulations.				

with 161 cases, or 6.4%, in 1992. As of December 31,1993, there were 398 cases managed for drug resistance with 105 of these being followed for resistance to both isoniazid(INH) and rifampin (RIF). Resistance to both INH and RIF is known as multi-drug resistant TB (MDR-TB). The rising numbers of MDR-TB cases in 1993 are of particular concern. In 1993 there were 26 new cases of MDR-TB compared with 20 new cases of MDR-TB reported in 1992.

When patients do not complete adequate therapy, they are at high risk of developing secondary resistance or relapse. Directly observed therapy (DOT), in which a healthcare worker or other person observes the patient taking the medicine, is the most reliable and effective way of administerine anti-TB medications and assuring treatment

The definition of a case of AIDS was revised in 1993 to include HIV-infected persons who have either pulmonary or extrapulmonary TB.

A recent collaborative work between the TB and HIV/AIDS surveillance programs of TDH has resulted in a more accurate count for TB patients coinfected with HIV/AIDS. Compared with 1988, the number of reported TB patients coinfected with HIV / AIDS has more than doubled.

The emergence of drug resistant TB is one of the greatest threats to TB control. In 1993 there were 169 new cases, or 7% of total cases, that were resistant to one or more drugs compared
completion. Ideally, every TB patient should receive every dose of anti-TB medication within a program of DOT. Health Department staff can provide DOT at a clinic, a patient's home or work, drug-treatment centers, correctional centers, community-based organizations, or any mutually agreed upon site. TDH recommends that DOT be considered for all patients because of the difficulty in predicting which patients will adhere to a prescribed treatment regimen. As of December 1993, approximately 30% of TB patients were receiving anti-TB medications by DOT. The TDH goal for DOT is 55% by December 1994.

Tuberculosis Elimination Division (512)458-7447

Tuberculosis: DNA Fingerprinting

DNA fingerprinting is a relatively new technology that is useful for some epidemiologic investigations. There are different methods for performing DNA fingerprinting, but they all have the same basis: use of restrictionenzymes that recognize specific nucleotide sequences and then cleave the chromosomes at these sites into smaller fragments that can be measured on an electrophoretic gel. The distribution of fragments on such a gel forms a pattern. An epidemiologic lirk between two different cases of a disease is established when the organisms from the two cases have identical (or very nearly identical) patterns of DNA fragment distribution.

The Texas Department of Health (TDH) laboratories can perform DNA fingerprinting on selected organisms. This method was used in 1993 to prove that an increase in shigellosis cases in San Marcos represented a communitywide outbreak rather than several unrelated clusters. This technique also may prove useful in differentiating sporadic cases of meningococcal meningitis from clusters of disease.

Tuberculosis (TB) is a disease for which DNA fingerprinting is especially useful. TB has such a long and variable incubation period that definite epidemiologic links between cases are extrememly difficult to establish. Now, with DNA fingerprinting, such links can be made. TDH has not yet used this tool in a TB cluster investigation, but has used it to link selected cases.

The Centers for Disease Control and Prevention (CDC) has funded regional labs to perform DNA fingerprinting on Mycobacterium tuberculosis. The lab for Texas is at the Little Rock VA

Hospitalin Arkansas. DNA fingerprint patterns will be archived and stored in such a way that it will be possible to compare cases seen in differentlocations and points in time. The capacity of the regional lab is limited, but TDH expects to be able to obtain DNA fingerprints on 250-300 cases per year. Initially, TDH will use DNA fingerprinting to determine the proportion of cases due to recent TB transmission in two settings: the Texas prison system and one large city. As this data is evaluated, other targets for DNA fingerprinting will be selected.

This technology also will be used for investigating TB clusters. Since a cluster may not be recognized early, all TB isolates will be frozen at TDH so that they can be DNA fingerprinted at a later date. This process will enable TDH staff to analyze better the kind of slowly developing outbreak that is so characteristic of TB.

DNA fingerprinting will advance knowledge in several other ways:

- Detection or confirmation of the route, mechanism, and location of TB transmission
- Detection of errors in laboratory results (whether originatingin the lab or prior to specimen arrival at the lab)
- Clarification of the mechanisms of the development of drug-resistant TB organisms
- Differentiation between recurrent disease due to relapse and that due to new infection
- Differentiation between recently transmitted and remotely transmitted disease
- Improved understanding of the global spread of TB

Bureau of Communicable Disease Control (512)
458-7455

Tuberculosis Drug Resistance Study

In 1993, the Texas Department of Health, Bureau of Communicable Disease Control, conducted a study of drug resistant tuberculosis in Texas for 1986 through 1992. This study represents an attempt to assess the incidence of drug resistance for all tuberculosis (TB) patients reported in Texas during the 1986-1992 period.

During 1986-1992, a total of $14,620 \mathrm{~TB}$ cases were reported to the Texas Department of Health, TuberculosisElimination Division. The annual number ranged from 1,890 to 2,510 cases. The average annual incidence rate was 12.24 cases per 100,000 population. Counties with the largest average annual incidence rate were located along the Texas-Mexico border.

Annual incidence rates in females were lower compared with males in each race/ethnicity group. From 1986 through 1992, rates remained fairly constant for whites. Rates for African-American males, Hispanic males, and African-Americanfemales increased $31 \%, 50 \%$, and 83% respectively.

Figure 1. INH Resistant Counties, 1986-1992

Table 1. Overall Resistance of Mycobacterium tuberculosis to First Line Antibiotics: Texas, *1986-1992

Antibiotics	Number	Percent
Streptomycin	615	5.3
Isoniazid	560	4.8
Rifampin	286	2.5
Ethionamide	153	1.3
Ethambutol	133	1.1
Pyrazinamide	50	0.3
*Aloneorin combinationwithother antibiotics		
Total of culture confirmedcases $=11,555$		

Table 2. Common Resistance Patterns of Mycobacterium tuberculosis to First Line Antibiotics: Texas, *1986-1992

Antibiotics	Number	Percent
STR alone	343	3.0
INH alone	206	1.8
INH + STR	113	1.0
ETH alone	64	0.5
RF alone	59	0.5
INH + RIF	49	0.4
*ETH (ethionamide); $/$ INH (isoniazid),RIF (rifampin),STR (strepto-		
mycin)		
Texas totalof culture confirmed cases $=11,555$		

Average age-specific rates were lower for whites in each age group compared with Hispanics or African-Americans. Rates increase with increasing age. In older age groups, agespecific rates are higher for African-Americans compared with Hispanics or whites except in persons aged 65 years or older.

Of the 14,620 reported cases, 11,555 (79\%) . cases were laboratory confirmed. Overall, 9.7% of patients had isolates resistant to one or more antituberculosis drugs, 4.8% had isolates resistant to at least isoniazid and 1.8% had resistance to isoniazid alone. Overall, 2.5% had isolates resistant to at least rifampin and 0.5% had isolates resistant to rifampin alone. See tables 1 and 2.

TB patients with resistance to isoniazid or rifampin resided throughout the state. Isoniazid and rifampin resistance were more common in counties along the Texas-Mexico border compared with nonborder counties (Relative Risk $=1.87$, pe 0.0001 and Relative Risk $=2.91, \mathrm{p}<0.001$) respectively. See figures 1 and 2.

Isoniazid resistance was more common in Asians (Relative Risk $=2.41$, p <0.001) and Hispanics (Relative Risk $=1.50, \mathrm{p}<$ 0.001) compared with whites. Rifampin resistance was more common in Hispanics (Relative Risk $=1.71, \mathrm{p}<0.001$) compared with whites. See table 3.

Tuberculosis Elimination Division (512) 458-7447

Figure 2. RIF Resistant Counties, 1986-1992

Table 3. Demographic Characteristics of Tuberculosis, Texas 1986-1 992

Tuberculosis Laboratory Reporting Study

The Texas Department of Health (TDH)requires that all laboratories notify the Tuberculosis Elimination Division within a seven-day period of patients with cultures positive for Mycobacterium tuberculosis. In 1993, 79\% of all TB cases reported to TB Elimination Division were culture positive for M. tuberculosis.

In 1993 the Bureau of Communicable Disease Controlidentified thirty-nine laboratories in Texas that culture and identify M. tuberculosis. A letter was sent to these laboratories requesting permission to visit and to obtain a list of all patients whose test results were culture-positive for M. tuberculosis. An on-site survey was conducted at 31 labs, and a list was obtained with the patients' name, date of birth, social security number and name of physician. The list of patients whose culture was positive for M. tuberculosis was matched with all tuberculosis cases reported in 1993. Only 28 cases which were culture positive were not reported. This number is 1.4% of the total culture positive cases.

Several problem areas in reporting were identified during the survey. Two facilities failed to report all of the patients with positive cultures for M. tuberculosis. Of those reporting positive cultures, some facilities did not report during a seven day period as is mandated by the state. In one instance the culture was reported as late as six months after the results were known at the laboratory. While some facilities report their positive culture results directly, others report cultures positive for M. tuberculosis through their infection control nurse. Once the results were reported to the local health departments, there sometimes were delays in reporting this information to the TDH Tuberculosis Elimination Division.

Tuberculosis Elimination Division (512) 458-7447

Regional Statistical Summaries

Public Health Region 1

PUBLIC HEALTH REGION 1-1993

		SALMONELLOSIS		Shigellosis		CAMPYLOBACTER		AMEBIASIS	
COUNTY	1993 POP.	CASES	RATE	CASES	RATE	CASES	RATE	CASES	RATE
ARMSTRONG	2,017	0	0.0	0	0.0	0	0.0	0	0.0
BAILEY	7,128	0	0.0	0	0.0	0	0.0	0	0.0
BRISCOE	1,960	0	0.0	0	0.0	0	0.0	0	0.0
CARSON	6,543	0	0.0	0	0.0	0	0.0	0	0.0
CASTRO	9,236	0	0.0	0	0.0	0	0.0	0	0.0
CHILDRESS	6,789	0	0.0	0	0.0	0	0.0	0	0.0
COCHRAN	4,530	1	22.1	0	0.0	0	0.0	0	0.0
COLLINGSWORTH	3,512	2	56.9	0	0.0	1	28.5	0	0.0
CROSBY	7,408	0 !	0.0	17	229.5	1	13.5	0	0.0
DALLAM	5,486	0 !	0.0	3	54.7	0	0.0	0	0.0
DEAF SMITH	19,459	3	15.4	0	0.0	0	0.0	0	0.0
DICKENS	2,529	2 !	79.1	0	0.0	0	0.0	0	0.0
DONLEY	3,607	0 i	0.0	0	0.0	0	0.0	0	0.0
FLOYD	8,585	1	11.6	3	34.9	0	0.0	0	0.0
GARZA	5,191	$0 \quad \vdots$	0.0	1	19.3	0	0.0	0	0.0
GRAY	24,194	1	4.1	6	24.8	0	0.0	0	0.0
HALE	34,556	2	5.8	3	8.7	1	2.9	0	0.0
HALL	3,812	0	0.0	0 ¢	0.0	0 :	0.0	0	0.0
HANSFORD	5,867	3 :	51.1	0	0.0	0	0.0	0	0.0
HARTLEY	3,627	0 :	0.0	0	0.0	0 :	0.0	0	0.0
HEMPHILL	3,709	0	0.0	0	0.0	0	0.0	0	0.0
HOCKLEY	24,348	2	8.2	9	37.0	1 :	4.1	0	0.0
HUTCHINSON	25,392	5 :	19.7	3	11.8	0 !	0.0	0	0.0
KING	365	0 ;	0.0	0	0.0	0 :	0.0	0	0.0
LAMB	14,910	:	6.7	$2 \quad \vdots$	13.4	0	0.0	0	0.0
LIPSCOMB	3,123	0 -	0.0	1	32.0	0	0.0	0	0.0
LUBBOCK	224,207	61	27.2	170 !	75.8	17	7.6	0 ¢	0.0
LYNN	6,807	1 !	14.7	$2 \quad \vdots$	29.4	1	14.7	0 !	0.0
MOORE	18,225	3 !	16.5	13 !	71.3	0	0.0	0	0.0
MOTLEY	1,507	0	0.0	0	0.0	0	0.0	0	0.0
OCHILTREE	9,121	2	21.9	$0 \quad$!	0.0	0	0.0	0 !	0.0
OLDHAM	2,269	0 !	0.0	0 !	0.0	1	44.1	0 !	0.0
PARMER	10,066	0 !	0.0	0 ;	0.0	0	0.0	0 !	0.0
POTTER	100,165	38	37.9	44 \ldots	43.9	14	14.0	$0 \quad$!	0.0
RANDALL	95,751	14	14.6	18 !	18.8	4	4.2	0 ¢	0.0
ROBERTS	1,031	$0 \quad \vdots$	0.0	0 :	0.0	0 ¢	0.0	0 :	0.0
SHERMAN	2,881	0 !	0.0	0 :	0.0	0 !	0.0	0 !	0.0
SWISHER	8,708	$0 \quad \vdots$	0.0	1 !	11.5	0 -	0.0	0 !	0.0
-TERRY	13,453	13 !	96.6	5 :	37.2	0 -	0.0	0	0.0
WHEELER	5,720	$0 \quad \vdots$	0.0	0	0.0	0 :	0.0	0 :	0.0
YOAKUM	9,010	$0 \quad \vdots$	0.0	0 !	0.0	0 !	0.0	0 :	0.0

REGIONAL TOTAL	746,858	155	\vdots	20.8	301	\mathbf{i}	40.3	41	$\mathbf{~}$	5.5	0	\vdots

PUBLIC HEALTH REGION 1-1993

		HEPATITIS A			HEPATITIS B			HEPATITIS C			HEPATITIS UNSPECIFIED		
COUNTY	1993 POP.	CASES		RATE									
ARMSTRONG	2,017		!	0.0	0	!	0.0	0	!	0.0	0	!	0.0
BAILEY	7,128	0	!	0.0	0	!	0.0	0	:	0.0	0	:	0.0
BRISCOE	1,960	0	!	0.0	0	:	0.0	0	:	0.0	0	:	0.0
CARSON	6,543	0	!	0.0	0	:	0.0	0	!	0.0	0	!	0.0
CASTRO	9,236	7	!	75.8	0	:	0.0	0	!	0.0	0	!	0.0
CHILDRESS	6,789	0	!	0.0	0	;	0.0	0	!	0.0	0	:	0.0
COCHRAN	4,530	0	!	0.0	0	!	0.0	0	:	0.0	0	:	0.0
COLLINGSWORTH	3,512	0	!	0.0		:	28.5	0	:	0.0	0	:	0.0
CROSBY	7,408	0	!	0.0	0	:	0.0	0	:	0.0	0	:	0.0
DALLAM	5,486	0	!	0.0		:	0.0	0	\vdots	0.0	0	:	0.0
DEAF SMITH	19,459	1	!	5.1	0	:	0.0	0	!	0.0	0	:	0.0
DICKENS	2,529	0	!	0.0	0	!	0.0	0	:	0.0	0	!	0.0
DONLEY	3,607	0	:	0.0	0	:	0.0	0	:	0.0	0	:	0.0
FLOYD	8,585	1	\vdots	11.6	0		0.0	0	\vdots	0.0	0	$\underline{\square}$	0.0
GARZA	5,191	0	!	0.0	0	:	0.0	0	:	0.0	0	:	0.0
GRAY	24,194	2	!	8.3	8	:	33.1	1	:	4.1	0	:	0.0
HALE	34,556	16	!	46.3	1	!	2.9	2	:	5.8	0	:	0.0
HALL	3,812	0	!	0.0	0	\vdots	0.0	0	\vdots	0.0	0	!	0.0
HANSFORD	5,867	0	:	0.0	0	:	0.0	0	!	0.0	0	:	0.0
HARTLEY	3,627	0	:	0.0	0	!	0.0	0	:	0.0	0	:	0.0
HEMPHILL	3,709	0	:	0.0	0	:	0.0	0	:	0.0	0	!	0.0
HOCKLEY	24,348	0	\vdots	0.0	2	\vdots	8.2	0	!	0.0	0	!	0.0
HUTCHINSON	25,392	8	!	31.5	4	!	15.8	0	\vdots	0.0	0	!	0.0
KING	365	0	:	0.0	0	:	0.0	0	!	0.0	0	:	0.0
LAMB	14,910	8	:	53.7	0		0.0	0	:	0.0	0	:	0.0
LIPSCOMB	3,123	0	!	0.0	0	:	0.0	0	!	0.0	0	!	0.0
LUBBOCK	224,207	6	!	2.7	6	\vdots	2.7	3	¢	1.3	0	!	0.0
LYNN	6,807	0	!	0.0	0	!	0.0	0	:	0.0	0	:	0.0
MOORE	18,225	0	:	0.0	0	:	0.0	0	!	0.0	0	:	0.0
MOTLEY	1,507	0	:	0.0	0	:	0.0	0	:	0.0	0	!	0.0
OCHILTREE	9,121	0	!	0.0	0	!	0.0	0	!	0.0	0	:	0.0
OLDHAM	2,269	0	!	0.0	0	!	0.0	0		0.0	0	:	0.0
PARMER	10,066	0	:	0.0	0	!	0.0	0	!	0.0	0	!	0.0
POTTER	100,165	9	\vdots	9.0	22	!	22.0	9	!	9.0	0	:	0.0
RANDALL	95,751	4	:	4.2	7	:	7.3	0	!	0.0	0	:	0.0
ROBERTS	1,031	0	;	0.0	0	:	0.0	0	!	0.0	0	:	0.0
SHERMAN	2,881	0	!	0.0	0	\vdots	0.0	0	!	0.0	0	!	0.0
SWISHER	8,708	0		0.0	1	:	11.5	0	!	0.0	0	:	0.0
TERRY	13,453	7	!	52.0	0	:	0.0	1	!	7.4	0	:	0.0
WHEELER	5,720	0	:	0.0	0		0.0	0	!	0.0	0		0.0
YOAKUM	9,010	0	:	0.0	0	\vdots	0.0	0	!	0.0	0	:	0.0

REGIONAL TOTAL	746,858	69	\vdots	9.2	52	\vdots	7.0	16	\vdots

REPORTED CASES OF OTHER SELECTED DISEASES AND RATES PER 100,000 POPULATION

PUBLIC HEALTH REGION 1-1993

REPORTED CASES OF VACCINE PREVENTABLE DISEASES AND RATES PER 100,000 POPULATION

PUBLIC HEALTH REGION 1-1993

		MEASLES		MUMPS		PERTUSSIS		RUBELLA	
COUNN	1993 POP.	CASES	RATE	CASES	RATE	CASES	RATE	CASES	RATE
ARMSTRONG	2,017	0	0.0	0 :	0.0	0	0.0	0	0.0
BAILEY	7,128	0	0.0	0 !	0.0	0	0.0	0	0.0
BRISCOE	1,960	0	0.0	0 :	0.0	0	0.0	0	0.0
CARSON	6,543	0	0.0	0 -	0.0	0	0.0	0	0.0
CASTRO	9,236	0	0.0	0 !	0.0	0	0.0	0	0.0
CHILDRESS	6,789	0	0.0	0 !	0.0	0	0.0	0	0.0
COCHRAN	4,530	0	0.0	0 ¢	0.0	0	0.0	0	0.0
COLLINGSWORTH	3,512	0	0.0	0 !	0.0	0	0.0	0	0.0
CROSBY	7,408	0	0.0	1 !	13.5	0	0.0	0	0.0
DALLAM	5,486	0 !	0.0	0 !	0.0	0	0.0	0 !	0.0
DEAF SMITH	19,459	0 !	0.0	0 !	0.0	0	0.0	0	0.0
DICKENS	2,529	0	0.0	0 !	0.0	0 :	0.0	0	0.0
DONLEY	3,607	0 !	0.0	0 !	0.0	0	0.0	0	0.0
FLOYD	8,585	0	0.0	1 !	11.6	0	0.0	0	0.0
GARZA	5,191	0 ¢	0.0	0 !	0.0	0 ¢	0.0	0 !	0.0
GRAY	24,194	0	0.0	0 ذ	0.0	0	0.0	0 ;	0.0
HALE	34,556	0	0.0	1 !	2.9	0	0.0	0	0.0
HALL	3,812	0	0.0	0 !	0.0	0	0.0	0 !	0.0
HANSFORD	5,867	0 :	0.0	0 :	0.0	0	0.0	0 :	0.0
HARTLEY	3,627	0	0.0	0 :	0.0	0 !	0.0	0	0.0
HEMPHILL	3,709	0	0.0	1	27.0	0 ¢	0.0	0	0.0
HOCKLEY	24,348	0	0.0	1	4.1	0	0.0	0	0.0
HUTCHINSON	25,392	0	0.0	0	0.0	0 !	0.0	0	0.0
KING	365	0	0.0	0 !	0.0	0 ¢	0.0	0	0.0
LAMB	14,910	0	0.0	0 ;	0.0	0 !	0.0	0	0.0
LIPSCOMB	3,123	0	0.0	0 ;	0.0	0 !	0.0	0	0.0
LUBBOCK	224,207	0	0.0	1 !	0.4	$0 \quad \vdots$	0.0	4	1.8
LYNN	6,807	0	0.0	0	0.0	0 !	0.0	1	14.7
MOORE	18,225	$0 \quad \vdots$	0.0	0 ¢	0.0	0 ¢	0.0	0 :	0.0
MOTLEY	1,507	0	0.0	0 !	0.0	0	0.0	0 ¢	0.0
OCHILTREE	9,121	0	0.0	0	0.0	0	0.0	0	0.0
OLDHAM	2,269	0 !	0.0	0 !	0.0	0 !	0.0	0 !	0.0
PARMER	10,066	0 !	0.0	2 !	19.9	0 !	0.0	0	0.0
POTTER	100,165	0	0.0	2	2.0	0	0.0	0	0.0
RANDALL	95,751	0	0.0	2	2.1	0 0	0.0	0	0.0
ROBERTS	1,031	0 !	0.0	0 :	0.0	0 ¢	0.0	0 :	0.0
SHERMAN	2,881	0 !	0.0	0 !	0.0	0 -	0.0	0 ¢	0.0
SWISHER	8,708	0	0.0	0 :	0.0	0	0.0	0 i	0.0
TERRY	13,453	0	0.0	1	7.4	0	0.0	0 ¢	0.0
WHEELER	5,720	0 !	0.0	0 !	0.0	0 :	0.0	0 !	0.0
YOAKUM	9,010	0 !	0.0	1 ;	11.1	0 :	0.0	0 !	0.0

TEXAS	$17,958,512$	10	\vdots	0.1	231	\vdots	1.3	121	\vdots	0.7	22
\vdots	0.1										

REPORTED CASES OF SELECTED VIRAL DISEASES AND RATES PER 100,000 POPULATION
PUBLIC HEALTH REGION 1-1993

		ASCEPTIC MENINGITIS			ENCEPHALITIS			INFLUENZA \& FLULIKE ILLNESS			CHICKENPOX		
COUNTY	1993 POP.	CASES		RATE									
ARMSTRONG	2,017	0	!	0.0	0	:	0.0	0	\vdots	- 0.0	0	!	0.0
BAILEY	7,128	0	!	0.0	0	!	0.0	0	!	0.0	14	!	196.4
BRISCOE	1,960	0	\vdots	0.0	0	\vdots	0.0	0	!	0.0	0	!	0.0
CARSON	6,543	0	!	0.0	0	!	0.0	0	:	0.0	0	!	0.0
CASTRO	9,236	1	!	10.8	0	!	0.0	0	!	0.0	0	!	0.0
CHILDRESS	6,789	0	!	0.0	0	!	0.0	0	;	0.0	0	:	0.0
COCHRAN	4,530	0	!	0.0	0	!	0.0	0	!	0.0	0	!	0.0
COLLINGSWORTH	3,512	0	!	0.0	0	!	0.0	39	\vdots	1,110.5	1	!	28.5
CROSBY	7,408	0	:	0.0	0	!	0.0	0	:	0.0	0	!	0.0
DALLAM	5,486	0	!	0.0	0	!	0.0	0	:	0.0	0	!	0.0
DEAF SMITH	19,459	3	!	15.4	0	!	0.0	0	!	0.0	0	!	0.0
DICKENS	2,529	0	!	0.0	0	!	0.0	0	!	0.0	0	;	0.0
DONLEY	3,607	0	!	0.0	0	!	0.0	0	!	0.0	0	!	0.0
FLOYD	8,585	1	!	11.6	0	:	0.0	0	\vdots	0.0	0	!	0.0
GARZA	5,191	0	!	0.0	0	!	0.0	0	!	0.0	0	!	0.0
GRAY	24,194	1	!	4.1	0	!	0.0	0	!	0.0	0	!	0.0
HALE	34,556	0	!	0.0	0	:	0.0	810	,	2,344.0	197	!	570.1
HALL	3,812	0	!	0.0	0	!	0.0	0	!	0.0	0	!	0.0
HANSFORD	5,867	0	!	0.0	0	:	0.0	0	!	0.0	2	!	34.1
HARTLEY	3,627	0	\vdots	0.0	0	!	0.0	0	!	0.0	0	!	0.0
HEMPHILL	3,709	0	!	0.0	0	:	0.0	0	\vdots	0.0	0	!	0.0
HOCKLEY	24,348	0	!	0.0	0	!	0.0	0	!	0.0	4	!	16.4
HUTCHINSON	25,392	3	!	11.8	0	!	0.0	0	!	0.0	0	:	0.0
KING	365	0	!	0.0	0	!	0.0	0	!	0.0	0	!	0.0
LAMB	14,910	0	:	0.0	0	:	0.0	0	!	0.0	0	!	0.0
LIPSCOMB	3,123	0	:	0.0	0	!	0.0	0	!	0.0	0	!	0.0
LUBBOCK	224,207	34	:	15.2	0	!	0.0	104	!	46.4	73	!	32.6
LYNN	6,807	0	!	0.0	0	!	0.0	0	:	0.0	0	!	0.0
MOORE	18,225	3	!	16.5	0	;	0.0	0	!	0.0	0	!	0.0
MOTLEY	1,507	0	!	0.0	0	!	0.0	0	!	0.0	0	!	0.0
OCHILTREE	9,121	0	!	0.0	0	!	0.0	0	\vdots	0.0	0	\vdots	0.0
OLDHAM	2,269	0	:	0.0	0	!	0.0	0	;	0.0	0	!	0.0
PARMER	10,066	0	!	0.0	0	!	0.0	0	!	0.0	0	;	0.0
POTTER	100,165	46	!	45.9	0	!	0.0	5006	:	4,997.8	69	:	68.9
RANDALL	95,751	16	!	16.7	0	:	0.0	2849	!	2,975.4	66	:	68.9
ROBERTS	1,031	0	!	0.0	0	!	0.0	0	!	0.0	0	!	0.0
SHERMAN	2,881	0	!	0.0	0	!	0.0	0	!	0.0	0	:	0.0
SWISHER	8,708	0	!	0.0	0	!	0.0	0	!	0.0	0	!	0.0
TERRY	13,453	2	!	14.9	0	!	0.0	0	!	0.0	0	!	0.0
WHEELER	5,720	0	!	0.0	0	!	0.0	0	!	0.0	0	!	0.0
YOAKUM	9,010	0	\vdots	0.0	0	!	0.0	0	\%	0.0	3	\%	33.3

REGIONAL TOTAL	746,858	110	!	14.7	0	!	0.0	8808	1,179.3	429	!	57.4
TEXAS	17,958,512	1,329	!	7.4	11	:	0.3	277,453	1,545.0	14,291	\vdots	79.6

Public Health Region 2

REPORTED CASES OF SELECTED GASTROINTESTINAL DISEASES AND RATES PER 100,000 POPULATION

PUBLIC HEALTH REGION 2-1993

		AMEBIASIS		CAMPYLOBACTER		SALMONELLOSIS		SHIGELLOSIS	
COUNTY	1993 POP.	CASES	RATE	CASES	RATE	CASES	RATE	CASES	RATE
ARCHER	8,093	0	0.0	0	0.0	0	0.0	1	12.4
BAYLOR	4,295	0	0.0	0	0.0	0	0.0	0	0.0
BROWN	34,007	0	0.0	0	0.0	6	17.6	6	17.6
CALLAHAN	11,907	0	0.0	0	0.0	2	16.8	0	0.0
CLAY	10,020	0	0.0	0	0.0	1	10.0	0	0.0
COLEMAN	9,515	0	0.0	1	10.5	2	21.0	4	42.0
COMANCHE	13,294	0	0.0	0	0.0	2	15.0	1	7.5
COTTLE	2,223	0	0.0	0	0.0	0	0.0	0	0.0
EASTLAND	18,125	0	0.0	0	0.0	1	5.5	0	0.0
FISHER	4,475	0	0.0	0	0.0	$3 \quad \vdots$	67.0	0	0.0
FOARD	1,775	0	0.0	0	0.0	1 !	56.3	0	0.0
HARDEMAN	5,194	10	192.5	0	0.0	$1 \quad$!	19.3	2	38.5
HASKELL	6,734	0	0.0	0	0.0	0 :	0.0	0	0.0
JACK	6,941	0	0.0	0 :	0.0	0 :	0.0	0	0.0
JONES	18,337	0	0.0	0	0.0	2 :	10.9	0	0.0
KENT	1,021	0	0.0	0 !	0.0	0 :	0.0	0	0.0
KNOX	4,787	0	0.0	0 :	0.0	1 !	20.9	0	0.0
MITCHELL	7,985	0	0.0	0	0.0	0 !	0.0	0	0.0
MONTAGUE	16,861	0	0.0	0 !	0.0	$7 \quad$!	41.5	0	0.0
NOLAN	16,698	0	0.0	1	6.0	3	18.0	28	167.7
RUNNELS	11,288	0	0.0	1 !	8.9	3 !	26.6	5	44.3
SCURRY	18,736	0	0.0	0 !	0.0	$3 \quad$!	16.0	4	- 21.3
SHACKELFORD	3,720	0	0.0	0 :	0.0	0 !	0.0	0	0.0
STEPHENS	8,870	0	0.0	0 !	0.0	1	11.3	0	0.0
STONEWALL	1,999	0 !	0.0	0 !	0.0	0 !	0.0	0	0.0
TAYLOR	123,138	140 !	113.7	6	4.9	10 !	8.1	57	46.3
THROCKMORTON	1,864	$0 \quad \vdots$	0.0	0 !	0.0	0 !	0.0	0	0.0
WICHITA	123,933	0 !	0.0	4	3.2	8 !	6.5	10	8.1
WILBARGER	15,159	0	0.0	0 !	0.0	0 ¢	0.0	1	6.6
YOUNG	17,820	$0 \quad \vdots$	0.0	1 !	5.6	2 !	11.2	25	140.3

REGIONAL TOTAL	528,664	15	2.8	14	2.6	59	11.2	144	27.2

PUBLIC HEALTH REGION 2-1993

		HEPATITIS A		HEPATITIS B		HEPATITIS C		HEPATITIS UNSPECIFIED	
COUNTY	1993 POP.	CASES	RATE	CASES	RATE	CASES	RATE	CASES	RATE
ARCHER	8,093	0	0.0	0	0.0	0	0.0	0	0.0
BAYLOR	4,295	0	0.0	0	0.0	0	0.0	0	0.0
BROWN	34,007	2	5.9	2	5.9	0	0.0	0	0.0
CALLAHAN	11,907	0	0.0	0	0.0	0	0.0	0	0.0
CLAY	10,020	0	0.0	0	0.0	0	0.0	0	0.0
COLEMAN	9,515	0	0.0	0	0.0	0	0.0	0	0.0
COMANCHE	13,294	1	7.5	0	0.0	0	0.0	0	0.0
COTTLE	2,223	0	0.0	0	0.0	0	0.0	0	0.0
EASTLAND	18,125	0	0.0	1	5.5	0	0.0	0	0.0
FISHER	4,475	0	0.0	0	0.0	0	0.0	0	0.0
FOARD	1,775	0	0.0	0	0.0	0	0.0	0	0.0
HARDEMAN	5,194	0	0.0	1	19.3	0	0.0	0	0.0
HASKELL	6,734	0	0.0	0	0.0	0	0.0	0	0.0
JACK	6,941	1	14.4	1	14.4	0	0.0	0	0.0
JONES	18,337	0	0.0	0	0.0	0	0.0	0	0.0
KENT	1,021	0	0.0	0	0.0	0	0.0	0	0.0
KNOX	4,787	1	20.9	2	41.8	1	20.9	0	0.0
MITCHELL	7,985	0	0.0	0	0.0	0	0.0	0	0.0
MONTAGUE	16,861	2	11.9	0	0.0	1	5.9	0	0.0
NOLAN	16,698	3	18.0	1	6.0	0	0.0	0	0.0
RUNNELS	11,288	1	8.9	0	0.0	0	0.0	0	0.0
SCURRY	18,736	0	0.0	3	16.0	3	16.0	1	5.3
SHACKELFORD	3,720	2	53.8	0	0.0	0	0.0	1	26.9
STEPHENS	8,870	0	0.0	1	11.3	0	0.0	0	0.0
STONEWALL	1,999	0	0.0	1	50.0	0	0.0	0	0.0
TAYLOR	123,138	0	0.0	8	6.5	6	4.9	1	0.8
THROCKMORTON	1,864	0	0.0	0	0.0	0	0.0	0	0.0
WICHITA	123,933	39	31.5	6	4.8	11	8.9	0	0.0
WILBARGER	15,159	2	13.2	2	13.2	0	0.0	0	0.0
YOUNG	17,820	2	11.2	1	5.6	1	5.6	0	0.0

REGIONAL TOTAL	528,664	56	\vdots	10.6	31	\vdots	5.9	23	\vdots	4.4	3
\vdots											

REPORTED CASES OF OTHER SELECTED DISEASES AND RATES PER 100,000 POPULATION

PUBLIC HEALTH REGION 2-1993

REPORTED CASES OF VACCINE PREVENTABLE DISEASES AND RATES PER 100,000 POPULATION

PUBLIC HEALTH REGION 2-1993

		MEASLES			MUMPS			PERTUSSIS		RUBELLA		
COUNTY	1993 POP.	CASES		RATE	CASES		RATE	CASES	RATE	CASES		RATE
ARCHER	8,093	0	\vdots	0.0	0	\vdots	0.0	0	0.0	0	:	0.0
BAYLOR	4,295	0	!	0.0	0	!	0.0	0	0.0	0	:	0.0
BROWN	34,007	0	!	0.0	0	!	0.0	0	0.0	0	:	0.0
CALLAHAN	11,907	0	\vdots	0.0	0	!	0.0	0	0.0	0	!	0.0
CLAY	10,020	0	!	0.0	1	!	10.0	0	0.0	0	!	0.0
COLEMAN	9,515	0	!	0.0	0	!	0.0	0	0.0	0	!	0.0
COMANCHE	13,294	0	\vdots	0.0	0	\vdots	0.0	0	0.0	0	!	0.0
COTTLE	2,223	0	!	0.0	0	;	0.0	0	0.0	0	\vdots	0.0
EASTLAND	18,125	0	\vdots	0.0	0	!	0.0	0	0.0	0	:	0.0
FISHER	4,475	0	!	0.0	0	\vdots	0.0	0	0.0	0	\vdots	0.0
FOARD	1,775	0	\vdots	0.0	0	!	0.0	0	0.0	0	:	0.0
HARDEMAN	5,194	0	!	0.0	0	\vdots	0.0	1	19.3	0	!	0.0
HASKELL	6,734	0	!	0.0	0	!	0.0	0	0.0	0	\vdots	0.0
JACK	6,941	0	\vdots	0.0	0	!	0.0	0	0.0	0	:	0.0
JONES	18,337	0	\vdots	0.0	6	\vdots	32.7	0	0.0	0	\vdots	0.0
KENT	1,021	0	!	0.0	0	!	0.0	0	0.0	0	!	0.0
KNOX	4,787	0	!	0.0	0	\vdots	0.0		0.0	0	!	0.0
MITCHELL	7,985	0	!	0.0	0	!	0.0	0	0.0	0	:	0.0
MONTAGUE	16,861	0	\vdots	0.0	1	\vdots	5.9	0	0.0	1	:	5.9
NOLAN	16,698	0	\vdots	0.0	0	!	0.0		0.0	0	\vdots	0.0
RUNNELS	11,288	0	\vdots	0.0	0	!	0.0		0.0	0	!	0.0
SCURRY	18,736	0	\vdots	0.0	1	:	5.3	0	0.0	0	:	0.0
SHACKELFORD	3,720	0	!	0.0	0	$\stackrel{\square}{\square}$	0.0		0.0	0	!	0.0
STEPHENS	8,870		\vdots	0.0		!	22.5	0	0.0	0	!	0.0
STONEWALL	1,999	0	\vdots	0.0	0	\vdots	0.0	0	0.0	0	!	0.0
TAYLOR	123,138	0	\vdots	0.0	0	\vdots	0.0	1	0.8	0	:	0.0
THROCKMORTON	1,864	0	!	0.0	0	\vdots	0.0	0	0.0	0	!	0.0
WICHITA	123,933	0	:	0.0	0	!	0.0	0	0.0	0	:	0.0
WILBARGER	15,159	0	!	0.0	0	\vdots	0.0	0	0.0	0	:	0.0
YOUNG	17,820	0	\vdots	0.0	1	\vdots	5.6	0	0.0	0		0.0

REPORTED CASES OF SELECTED VIRAL DISEASES AND RATES PER 100,000 POPULATION

PUBLIC HEALTH REGION 2-1993

		ASCEPTIC MENINGITIS		ENCEPHALITIS		INFLUENZA \& FLU-LIKE ILLNESS		CHICKENPOX	
COUNTY	1993 POP.	CASES	RATE	CASES	RATE	CASES	RATE	CASES	RATE
ARCHER	8,093	0	0.0	0	0.0	0	亠 0.0	0	0.0
BAYLOR	4,295	1	23.3	0	0.0	0	! 0.0	0	0.0
BROWN	34,007	0	0.0	0	0.0	7	! 20.6	0	0.0
CALLAHAN	11,907	3	25.2	0	0.0	0	- 0.0	0	0.0
CLAY	10,020	1	10.0	0	0.0	33	: 329.3	0	0.0
COLEMAN	9,515	1	10.5	0	0.0	0	$\vdots 0.0$	0	0.0
COMANCHE	13,294	0	0.0	0	0.0	153	: 1,150.9	0	0.0
COTTLE	2,223	0	0.0	0	0.0	0	$\vdots 0.0$	0	0.0
EASTLAND	18,125	0	0.0	0	0.0	0	$\vdots 0.0$	0	0.0
FISHER	4,475	1	22.3	0	0.0	0	0.0	0	0.0
FOARD	1,775	0	0.0	0	0.0	0	0.0	0	0.0
HARDEMAN	5,194	0	0.0	0	0.0	0	0.0	0	0.0
HASKELL	6,734	1	14.9	0	0.0	0	0.0	1	14.9
JACK	6,941	0	0.0	0	0.0	0	0.0	0	0.0
JONES	18,337	3	16.4	0	0.0	22	120.0	0	0.0
KENT	1,021	0	0.0	0	0.0	0	! 0.0	0	0.0
KNOX	4,787	0	0.0	0	0.0	0	0.0	0	0.0
MITCHELL	7,985	1	12.5	0	0.0	0	0.0	0	0.0
MONTAGUE	16,861	1	5.9	1	5.9	0	0.0	0	0.0
NOLAN	16,698	1	6.0	0	0.0	0	0.0	0	0.0
RUNNELS	11,288	0	0.0	0	0.0	0	0.0	0	0.0
SCURRY	18,736	2	10.7	0	0.0	10	53.4	15	80.1
SHACKELFORD	3,720	0	0.0	0	0.0	0	0.0	0	0.0
STEPHENS	8,870	1	11.3	0	0.0	0	0.0	2	22.5
STONEWALL	1,999	0	0.0	0	0.0	0	0.0	0	0.0
TAYLOR	123,138	16	13.0	0	0.0	1,559	1,266.1	326	264.7
THROCKMORTON	1,864	0	0.0	0	0.0	0	0.0	0	0.0
WICHITA	123,933	57	46.0	1	0.8	270	217.9	28	22.6
WILBARGER	15,159	0	0.0	0	0.0	105	692.7	0	0.0
YOUNG	17,820	0	0.0	0	0.0	116	651.0	8	44.9

REGIONAL TOTAL	528,664	91	17.2	2	0.4	2,275	430.3	380	71.9
TEXAS	17,958,512	1,329	7.4	61	0.3	277,453	1,545.0	14,291	79.6

Public Health Region 3

PUBLIC HEALTH REGION 3-1993

		AMEBIASIS		CAMPYLOBACTER		SALMONELLOSIS			SHIGELLOSIS		
COUNTY	1993 POP.	CASES	RATE	CASES	RATE	CASES		RATE	CASES		RATE
COLLIN	307,302	0	0.0	4	1.3	15	\vdots	4.9	27	!	8.8
COOKE	31,314	0	0.0	0	0.0	2	i	6.4	0	!	0.0
DALLAS	1,953,947	9	0.5	97	5.0	177	!	9.1	281	\vdots	14.4
DENTON	312,077	0	0.0	2	0.6	15	!	4.8	41	:	13.1
ELLIS	94,951	2	2.1	6	6.3	6	\vdots	6.3	9	!	9.5
ERATH	29,207	0	0.0	0	0.0	2	!	6.8	0	\vdots	0.0
FANNIN	24,886	0	0.0	0	0.0	3	!	12.1	2	!	8.0
GRAYSON	95,985	0	0.0	1	1.0	8	!	8.3	9	\vdots	9.4
HOOD	32,748	0	0.0	0	0.0	6	!	18.3	7	!	21.4
HUNT	67,618	0	0.0	0	0.0	9	!	13.3	7	!	10.4
JOHNSON	108,322	0	0.0	4	3.7	5	\vdots	4.6	23	\vdots	21.2
KAUFMAN	57,620	0	0.0	1	1.7	7	!	12.1	9	!	15.6
NAVARRO	41.009	0	0.0	4	9.8	2	!	4.9	1	!	2.4
PALA PINTO	25,641	0	0.0	0	0.0	3	!	11.7	2	!	7.8
PARKER	72,871	0	0.0	3	4.1	5	!	6.9	3	!	4.1
ROCKWALL	29,703	0	0.0	0	0.0	1	\vdots	3.4	2	\vdots	6.7
SOMERVELL	5,705	0	0.0	0	0.0	0	!	0.0	2	!	35.1
TARRANT	1,277,839	0	0.0	37	2.9	97	!	7.6	241	!	18.9
WISE	37,470	0	0.0	0	0.0	3	\vdots	8.0	4	!	10.7

REGIONAL TOTAL	$4,606,215$	11	\vdots	0.2	159	\vdots	3.5	366	\vdots	7.9	670
\vdots	14.5										

PUBLIC HEALTH REGION 3-1993

		HEPATITIS A		HEPATITIS B		HEPATITIS C		HEPATITIS UNSPECIFIED	
COUNTY	1993 POP.	CASES	RATE	CASES	RATE	CASES	RATE	CASES	RATE
COLLIN	307,302	18	5.9	27	8.8	2	0.7	2	0.7
COOKE	31,314	0	0.0	1	3.2	0	0.0	0	0.0
DALLAS	1,953,947	399	20.4	325	16.6	86	4.4	30	1.5
DENTON	312,077	21	6.7	6	1.9	3	1.0	0	0.0
ELLIS	94,951	7	7.4	5	5.3	0	0.0	1	1.1
ERATH	29,207	7	24.0	1	3.4	0	0.0	0	0.0
FANNIN	24,886	0	0.0	2	8.0	- 1	4.0	0	0.0
GRAYSON	95,985	3	3.1	11	11.5	9	9.4	0	0.0
HOOD	32,748	5	15.3	3	9.2	1	3.1	0	0.0
HUNT	67,618	0	0.0	3	4.4	2	3.0	0	0.0
JOHNSON	108,322	18	16.6	6	5.5	2	1.8	1	0.9
KAUFMAN	57,620	4	6.9	8	13.9	1	1.7	0	0.0
NAVARRO	41,009	0	0.0	1	2.4	0	0.0	0	0.0
PALA PINTO	25,641	7	27.3	7	27.3	2	7.8	0	0.0
PARKER	72.871	7	9.6	0	0.0	0	0.0	0	0.0
ROCKWALL	29,703	0	0.0	4	13.5	1	3.4	0.	0.0
SOMERVELL	5,705	0	0.0	0	0.0	0	0.0	0	0.0
TARRANT	1,277,839	413	32.3	157	12.3	44	3.4	14	1.1
WISE	37,470	17	45.4	0	0.0	3	8.0	0	0.0

REGIONAL TOTAL \square 926 20.1 567 12.3 157 3.4 48 48 1.0

REPORTED CASES OF OTHER SELECTED DISEASES AND RATES PER 100,000 POPULATION

PUBLIC HEALTH REGION 3-1993

PUBLIC HEALTH REGION 3-1993

REGIONALTOTAL	$4,606,215$	0	\vdots	0.0	45	\vdots	1.0	47	\vdots	1.0		5	\vdots	0.1

REPORTED CASES OF SELECTED VIRAL DISEASES AND RATES PER 100,000 POPULATION

PUBLIC HEALTH REGION 3-1993

COUNTY	1993 POP.	ASCEPTIC MENINGITIS			ENCEPHALITIS			INFLUENZA \& FLU-LIKE ILLNESS			CHICKENPOX		
		CASES		RATE									
COLLIN	307,302	14	;	4.6	0	!	0.0	1,310	:	426.3	172	!	56.0
COOKE	31,314	0	;	0.0	0	!	0.0	0	:	0.0	0	!	0.0
DALLAS	1,953,947	174	!	8.9	5	!	0.3	0	!	0.0	43	!	2.2
DENTON	312,077	7	:	2.2	2	:	0.6	0	:	0.0	52	:	16.7
ELLIS	94,951	14	!	14.7	0	!	0.0	0	!	0.0	0	:	0.0
ERATH	29,207	0	:	0.0	0	:	0.0	0	!	0.0	0	!	0.0
FANNIN	24,886	0	!	0.0	0	!	0.0	1	!	4.0	0	!	0.0
GRAYSON	95,985	3	!	3.1	0	:	0.0	1,162	!	1,210.6	23	:	24.0
HOOD	32,748	1	!	3.1	0	!	0.0	0	!	0.0	0	;	0.0
HUNT	67,618	1	!	1.5	0	!	0.0	202	!	298.7	80	!	118.3
JOHNSON	108,322	8	:	7.4	0	!	0.0	0	!	0.0	1	!	0.9
KAUFMAN	57,620	4	!	6.9	1	!	1.7	0	:	0.0	1	\vdots	1.7
NAVARRO	41,009	0	:	0.0	0	!	0.0	0	!	0.0	16	!	39.0
PALA PINTO	25,641	0	!	0.0	0	!	0.0	0	:	0.0	0	!	0.0
PARKER	72,871	0	;	0.0	0	!	0.0	0	!	0.0	0	!	0.0
ROCKWALL	29,703	0	!	0.0	0	!	0.0	0	;	0.0	0	$\dot{1}$	0.0
SOMERVELL	5,705	0	!	0.0	0	:	0.0	0	!	0.0	0	!	0.0
TARRANT	1,277,839	140	!	11.0	5	!	0.4	165	!	12.9	387	!	30.3
WISE	37,470	1	!	2.7	0	!	0.0	0	:	0.0	0	!	0.0

Public Health Region 4

REPORTED CASES OF SELECTED GASTROINTESTINAL DISEASES AND RATES PER 100,000 POPULATION
PUBLIC HEALTH REGION 4-1993

		AMEBIASIS		CAMPYLOBACTER		SALMONELLOSIS		Shigellosis		
COUNTY	$\begin{gathered} 1993 \\ \text { POPULATION } \end{gathered}$	CASES	RATE	CASES	RATE	CASES	RATE	CASES		RATE
ANDERSON	50,920	0	0.0	0	0.0	5	9.8	0	!	0.0
BOWIE	82,935	0	0.0		4.8	4	! 4.8	16	;	19.3
CAMP	10,170	0	0.0	0	0.0	0	0.0	0	!	0.0
CASS	29,901	0	'0.0	1	3.3	2	6.7	0	:	0.0
CHEROKEE	41,594	0	0.0	1	2.4	2	4.8	2	:	4.8
DELTA	4,845	0	0.0	0	0.0	0	0.0	0	:	0.0
FRANKLIN	7,895	0	0.0	0	0.0	0	0.0	0	;	0.0
GREGG	106,076	0	0.0	0	0.0	9	8.5	12		11.3
GARRISON	59,091	0	0.0	1	1.7	0	0.0	1	:	1.7
HENDERSON	63,631	0	0.0	0	0.0	4	6.3	2	!	3.1
HOPKINS	29,150	0	0.0	0	0.0	1	3.4	0	!	0.0
LAMAR	43,974	0	0.0	0	0.0	2	4.5	1	;	2.3
MARION	10,115	0	0.0	0	0.0		0.0	1	\vdots	9.9
MORRIS	13,044	0	0.0	0	0.0	0	0.0	0	!	0.0
PANOLA	22,594	0	0.0	0	0.0		4.4	1	!	4.4
RAINS	7,146	0	0.0	0	0.0	0	0.0	0	!	0.0
RED RIVER	14,134	0	0.0	0	0.0	2	14.2	0	:	0.0
RUSK	44,215	0	0.0	0	0.0		2.3	92	!	208.1
SMITH	156,652	0	0.0	0	0.0	23	14.7	16	!	10.2
TITUS	24,472	0	0.0	0	0.0	11	44.9	3	!	12.3
UPSHUR	32,055	0	0.0		0.0	3	9.4	1	!	3.1
VAN ZANDT	39,574	0	0.0	1	2.5	0	0.0	0	!	0.0
WOOD	30,645	0	0.0	0	0.0	2	6.5	3	;	9.8

REGIONAL TOTAL 924,828 0 \vdots 0.0 8 \vdots 0.9 72 \vdots 7.8
\begin{tabular}{\|l
\hline
\end{tabular}
STATEWIDE TOTAL

REPORTED CASES OF HEPATITIS AND RATES PER 100,000 POPULATION

PUBLIC HEALTH REGION 4-1993

REPORTED CASES OF OTHER SELECTED DISEASES AND RATES PER 100,000 POPULATION
PUBLIC HEALTH REGION 4-1993

		GONORRHEA			CHLAMYDIA			\mathbf{P} \& S SYPHILIS			TUBERCULOSIS		
COUNTY	$\begin{gathered} 1993 \\ \text { POPULATION } \end{gathered}$	CASES		RATE									
ANDERSON	50,920	26	\vdots	51.1	71	!	139.4	3	!	5.9	4	\vdots	7.9
BOWIE	82,935	128	\vdots	154.3	311	\vdots	375.0	16	!	19.3	12	!	14.5
CAMP	10,170	6	!	59.0	4	!	39.3	3	\vdots	29.5	2	!	19.7
CASS	29,901	32	!	107.0	38	!	127.1	2	B	6.7	1	!	3.3
CHEROKEE	41,594	36	\vdots	86.6	43	!	103.4	8	:	19.2	5	!	12.0
DELTA	4,845	2	!	41.3	1	!	20.6	0	!	0.0	0	!	0.0
FRANKLIN	7,895	0	$\stackrel{1}{1}$	0.0	2	!	25.3	0	!	0.0	1	!	12.7
GREGG	106,076	60	!	56.6	189	!	178.2	20	\vdots	18.9	9	!	8.5
GARRISON	59,091	180	\vdots	304.6	124	!	209.8	8	!	13.5	5	:	8.5
HENDERSON	63,631	23	!	36.1	36	!	56.6	3	!	4.7	8	\vdots	12.6
HOPKINS	29,150	21	\vdots	72.0	47	!	161.2	2	\vdots	6.9	1	\vdots	3.4
LAMAR	43,974	85	$\stackrel{\text { E, }}{\underline{1}}$	193.3	68	$\stackrel{\square}{\square}$	154.6	3	:	6.8	3	!	6.8
MARION	10,115	13	!	128.5	17	!	168.1	3	!	29.7	1	!	9.9
MORRIS	13,044	7	\vdots	53.7	32	\vdots	245.3	4	!	30.7	0	\vdots	0.0
PANOLA	22,594	19	\vdots	84.1	36	\vdots	159.3	5	\vdots	22.1	2	!	8.9
RAINS	7,146	0	\vdots	0.0	2	!	28.0	0	!	0.0	0	!	0.0
RED RIVER	14,134	18	\vdots	127.4	19	!	134.4	0	!	0.0	1	,	7.1
RUSK	44,215	16	\vdots	36.2	40	!	90.5	8	\vdots	18.1	3	\vdots	6.8
SMITH	156,652	576	!	367.7	567	\vdots	361.9	18	!	11.5	20	!	12.8
TITUS	24,472	15	\vdots	61.3	41	!	167.5	12	!	49.0	4	!	16.3
UPSHUR	32,055	12	\vdots	37.4	16	\vdots	49.9	0	!	0.0	6	!	18.7
VAN ZANDT	39,574	11	!	27.8	37	!	93.5	1	\vdots	2.5	1	\vdots	2.5
WOOD	30,645	13	\vdots	42.4	22	\vdots	71.8	0	!	0.0	4	\vdots	13.1

STATEWIDE TOTAL	17,958,512	30,122	167.7	43,874	244.3	2,530	14.1	2393	13.3

PUBLIC HEALTH REGION 4-1993

REPORTED CASES OF SELECTED VIRAL DISEASES AND RATES PER 100,000 POPULATION

PUBLIC HEALTH REGION 4-1993

Public Health Region 5

REPORTED CASES OF SELECTED GASTROINTESTINAL DISEASES AND RATES PER 100,000 POPULATION
PUBLIC HEALTH REGION 5-1993

REGIONAL TOTALS	678,941	0	!	0.0	16	!	2.4	43	!	6.3	71	!	10.5
STATEWIDE TOTALS	17,958,512	86	!	0.5	849	!	4.7	1,924	!	10.7	4,581	!	25.5

REPORTED CASES OF HEPATITIS AND RATES PER 100,000 POPULATION
PUBLIC HEALTH REGION 5-1993

		HEPATITIS A		HEPATITIS B		HEPATITIS C		HEPATITIS UNSPECIFED	
COUNTY	1993 POP.	CASES	RATE	CASES	RATE	CASES	RATE	CASES	RATE
ANGELINA	71,618	0	0.0	0	0.0	1	1.4	0	0.0
HARDIN	41,866	0	0.0	0	0.0	0	0.0	0	0.0
HOUSTON	21,518	0	0.0	0	0.0	0	0.0	0	0.0
JASPER	31,324	0	0.0	1	3.2	0	0.0	0	0.0
JEFFERSON	238,493	4	1.7	14	5.9	4	1.7	0	0.0
NACOGDOCHES	55,402	3	5.4	2	3.6	2	3.6	0	0.0
NEWTON	13,875	0	0.0	0	0.0	0	0.0	0	0.0
ORANGE	81,272	0	0.0	1	1.2	1	1.2	0	0.0
POLK	34,249	0	0.0	0	0.0	1	2.9	0	0.0
SABINE	9,818	0	0.0	1	10.2	0	0.0	0	0.0
SAN AUGUSTINE	7,980	0	0.0	0	0.0	0	0.0	0	0.0
SAN JACINTO	17,788	0	0.0	0	0.0	0	0.0	0	0.0
SHELBY	21,962	0	0.0	0	0.0	0	0.0	0	0.0
TRINITY	11,899	0	0.0	2	16.8	0	0.0	0	0.0
TYLER	17,884	0	0.0	0	0.0	0	0.0	0	0.0

| REGIONAL TOTALS | 678,941 | 7 | \vdots | 1.0 | 21 | \vdots | 3.1 | 9 | \vdots | 1.3 | 0 | \vdots | 0.0 |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- |

REPORTED CASES OF OTHER SELECTED DISEASES AND RATES PER 100,000 POPULATION
PUBLIC HEALTH REGION 5-1993

		GONORRHEA		CHLAMYDIA		P \& S SYPHILIS		TUBERCULOSIS	
COUNTY	1993 POP.	CASES	RATE	CASES	RATE	CASES	RATE	CASES	RATE
ANGELINA	71,618	199	277.9	325	453.8	15	20.9	8	11.2
HARDIN	41,866	29	69.3	17	40.6	3	7.2	1	2.4
HOUSTON	21,518	15	69.7	55	255.6	7	32.5	6	27.9
JASPER	31,324	62	197.9	91	290.5	5	16.0	2	6.4
JEFFERSON	238,493	242	101.5	137	57.4	264	110.7	26	10.9
NACOGDOCHES	55,402	61	110.1	161	290.6	12	21.7	3	5.4
NEWTON	13,875	15	108.1	21	151.4	0	0.0	0	0.0
ORANGE	81,272	4	4.9	11	13.5	22	27.1	5	6.2
POLK	34,249	14	40.9	73	213.1	1	2.9	5	14.6
SABINE	9,818	5	50.9	8	81.5	1	10.2	0	0.0
SAN AUGUSTINE	7,980	6	75.2	5	62.7	1	12.5	0	0.0
SAN JACINTO	17,788	3	16.9	10	56.2	4	22.5	3	16.9
SHELBY	21,962	18	82.0	31	141.2	3	13.7	5	22.8
TRINITY	11,899	7	58.8	4	33.6	1	8.4	0	0.0
TYLER	17:884	14	78.3	26	145.4	1	5.6	1	5.6

REGIONAL TOTALS	678,941	694	\vdots	102.2	975	143.6	340	\vdots	50.1

STATEWIDE TOTALS	17,958,512	30,122	167.7	43,874	244.3	2530	14.1	2,393	13.3

REPORTED CASES OF SELECTED VACCINE PREVENTABLE DISEASES AND RATES PER 100,000 POPULATION
PUBLIC HEALTH REGION 5-1993

		MEASLES		MUMPS		PERTUSSIS		RUBELLA	
COUNTY	1993 POP.	CASES	RATE	CASES	RATE	CASES	RATE	CASES	RATE
ANGELINA	71,618	0	0.0	1	1.4	2	2.8	0	0.0
HARDIN	41,866	0	0.0	0	0.0	0	0.0	0	0.0
HOUSTON	21,518	0	0.0	0	0.0	0	0.0	0	0.0
JASPER	31,324	0	0.0	0	0.0	0	0.0	0	0.0
JEFFERSON	238,493	0	0.0	2	0.8	0	0.0	0	0.0
NACOGDOCHES	55,402	0	0.0	0	0.0	1	1.8	1	1.8
NEWTON	13,875	0	0.0	0	0.0	0	0.0	0	0.0
ORANGE	81,272	0	0.0	0	0.0	0	0.0	0	0.0
POLK	34,249	0	0.0	1	2.9	0	0.0	0	0.0
SABINE	9,818	0	0.0	0	0.0	0	0.0	0	0.0
SAN AUGUSTINE	7,980	0	0.0	0	0.0	0	0.0	0	0.0
SAN JACINTO	17,788	0	0.0	0	0.0	0	0.0	0	0.0
SHELBY	21,962	0	0.0	0	0.0	1	4.6	0	0.0
TRINITY	11,899	0	0.0	0	0.0	0	0.0	0	0.0
TYLER	17,884	0	0.0	1	5.6	0	0.0	0	0.0

REPORTED CASES OF SELECTED VIRAL DISEASES AND RATES PER 100,000 POPULATION

PUBLIC HEALTH REGION 5-1993

		ASCEPTIC MENINGITIS		ENCEPHALITIS		INFLUENZA \& FLU-LIKE ILLNESS			CHICKENPOX	
COUNTY	1993 POP.	CASES	RATE	CASES	RATE	CASES		RATE	CASES	RATE
ANGELINA	71,618	1	1.4	0	0.0	3	!	4.2	0	! 0.0
HARDIN	41,866	1	2.4	0	0.0	0	!	0.0	12	28.7
HOUSTON	21,518	0	0.0	0	0.0	60	!	278.8	1	4.6
JASPER	31,324	0	0.0	0	0.0	217	!	692.8	43	137.3
JEFFERSON	238,493	3	1.3	0	0.0	446	!	187.0	421	176.5
NACOGDOCHES	55,402	1	1.8	0	0.0	38	\vdots	68.6	8	14.4
NEWTON	13,875	1	7.2	0	0.0	0	!	0.0	0	0.0
ORANGE	81,272	0	0.0	0	0.0	0	!	0.0	45	55.4
POLK	34,249	0	0.0	0	0.0	0	\vdots	0.0	0	0.0
SABINE	9,818	0	0.0		0.0	0	!	0.0	0	0.0
SAN AUGUSTINE	7,980	0	0.0	0	0.0	0	!	0.0	0	0.0
SAN JACINTO	17,788	0	0.0	0	0.0	0	:	0.0	0	0.0
SHELBY	21,962	0	0.0	0	0.0	0	!	0.0	0	0.0
TRINITY	11,899	0	0.0	0	0.0	11	!	92.4	7	58.8
TYLER	17,884	0	0.0	0	0.0	29	!	162.2	3	16.8

REGIONAL TOTALS	678,941	7	\vdots	1.0	0	\vdots	0.0	804	\vdots	118.4	540	\vdots

$\left.\begin{array}{|ll|l|l|l|ll|l|l|l|l|}\hline \text { STATEWIDE TOTALS } & 117,958,512 & 1,329 & \vdots & 7.4 & 61 & \vdots & 0.3 & 1277,453 & 1,545.0 & 14,291\end{array}\right)$

Public Health Region 6

REPORTED CASES OF SELECTED GASTROINTESTINAL DISEASES AND RATES PER 100,000 POPULATION
PUBLIC HEALTH REGION 6-1993

REGIONAL TOTALS	$14,1.15,833$	14	0.3	204	5.0	291	\vdots	7.1	536	\vdots	13.0

REPORTED CASES OF HEPATITIS AND RATES PER 100,000 POPULATION
PUBLIC HEALTH REGION 6-1993

reported cases of other selected diseases and rates per 100,000 Population

PUBLIC HEALTH REGION 6-1993

		GONORRHEA		CHLAMYDIA		P \& S SYPHILIS			TUBERCULOSIS		
COUNTY	1993 POP.	CASES	RATE	CASES	RATE	CASES		RATE	CASES		RATE
AUSTIN	20,141	17	84.4	17	84.4	3	\vdots	14.9	0	\vdots	0.0
BRAZORIA	201,851	91	45.1	212	105.0	17	\vdots	8.4	12	!	5.9
CHAMBERS	20,379	0	0.0	5	24.5	0	!	0.0	2	!	9.8
COLORADO	18,333	26	141.8	21	114.5	8	;	43.6	1	!	5.5
FORT BEND	261,716	64	24.5	155	59.2	6	!	2.3	28	:	10.7
GALVESTON	223,486	408	182.6	776	347.2	34	!	15.2	34	\vdots	15.2
HARRIS	2,957,057	7,646	258.6	9,118	308.3	567	\vdots	19.2	728	!	24.6
LIBERTY	54,645	10	18.3	44	80.5	4	:	7.3	11	!	20.1
MATAGORDA	37,414	10	26.7	56	149.7	0	!	0.0	7	!	18.7
MONTGOMERY	199,044	127	63.8	308	154.7	27	!	13.6	13	\vdots	6.5
WALKER	55,061	78	141.7	161	292.4	60	!	109.0	5	!	9.1
WALLER	24,463	43	175.8	93	380.2	19	!	77.7	52	\vdots	212.6
WHARTON	40,250	40	99.4	86	213.7	9	!	22.4	5	:	12.4

REGIONAL TOTALS	4,115,833	8,560	208.0	11.052	268.5	754	\vdots	18.3	898	\vdots	21.8
STATEWIDE TOTALS	17,958,512	30,122	167.7	43,874	244.3	2530	\vdots	14.1	2,393		13.3

REPORTED CASES OF SELECTED VACCINE PREVENTABLE DISEASES AND RATES PER 100,000 POPULATION

PUBLIC HEALTH REGION 6-1993

		MEASLES			MUMPS			PERTUSSIS			RUBELLA		
COUNTY	1993 POP.	CASES		RATE									
AUSTIN	20,141	0	!	0.0	0	\vdots	0.0	0	!	0.0	0	!	0.0
BRAZORIA	201,851	0	!	0.0	0	\vdots	0.0	1	!	0.5	0	!	0.0
CHAMBERS	20,379	0	!	0.0	4	:	19.6	0	:	0.0	0	:	0.0
COLORADO	18,333	0	:	0.0	0	!	0.0	0	:	0.0	0	:	0.0
FORT BEND	261,716	1	:	0.4	3	\vdots	1.1	0	!	0.0	0	!	0.0
GALVESTON	223,486	1	;	0.4	7	!	3.1	2	!	0.9	0	;	0.0
HARRIS	2,957,057	3	!	0.1	30	\vdots	1.0	17	\vdots	0.6	0	:	0.0
LIBERTY	54,645	4	:	7.3	1	:	1.8	0	:	0.0	0	:	0.0
MATAGORDA	37,414	0	!	0.0		\vdots	0.0		!	0.0	0	$\dot{\square}$	0.0
MONTGOMERY	199,044		\vdots	0.0		\vdots	0.0		\vdots	0.0	0	¢	0.0
WALKER	55,061	0	!	0.0		!	0.0		!	0.0	0	!	0.0
WALLER	24,463	0	!	0.0	0	\vdots	0.0	0	!	0.0	0	;	0.0
WHARTON	40,250	0	!	0.0	0	-	0.0	0	\vdots	0.0	0	\vdots	0.0

REGIONAL TOTALS	4,115,833	9	\vdots	0.2	45	\vdots	1.1	20	!	0.5	0	!	0.0
STATEWIDE TOTALS	17,958,512	10	\vdots	0.1	231	\vdots	1.3	121	!	0.7	22	!	0.1

PUBLIC HEALTH REGION 6-1993

		ASCEPTIC MENINGITIS		ENCEPHALITIS			INFLUENZA \& FLU-LIKE ILLNESS			CHICKENPOX		
COUNTY	1993 POP.	CASES	RATE	CASES		RATE	CASES		RATE	CASES		RATE
AUSTIN	20,141		0.0		!	5.0	0	!	0.0	0	\vdots	0.0
BRAZORIA	201,851	4	2.0	1	!	0.5	3	!	1.5	29	;	14.4
CHAMBERS	20,379		0.0		;	0.0		!	0.0	62	!	304.2
COLORADO	18,333	0	0.0	0	!	0.0	0	!	0.0	0	!	0.0
FORT BEND	261,716	9	3.4	3	!	1.1	6	!	2.3	131	!	50.1
GALVESTON	223,486	16	7.2		!	1.3	263	!	117.7	232	!	103.8
HARRIS	2,957,057	171	5.8	11	!	0.4	236,603	!	8,001.3	3,492	!	118.1
LIBERTY	54,645	0	0.0	0	\%	0.0	0	!	0.0	3	!	5.5
MATAGORDA	37,414	0	0.0	0	!	0.0	0	\vdots	0.0	0	!	0.0
MONTGOMERY	199,044	3	1.5	1	;	0.5	0	!	0.0	65	!	32.7
WALKER	55,061	0	0.0	0	:	0.0	101	!	183.4	79	!	143.5
WALLER	24,463	0	0.0	0	:	0.0	0	!	0.0	10	!	40.9
WHARTON	40,250	1	2.5	0	!	0.0	2	!	5.0	1	!	2.5

REGIONAL TOTALS	$4,115,833$	204	\vdots	5.0	20	\vdots	0.5	1236,978	\vdots	$5,757.7$	4,104	\vdots	99.7

Public Health Region 7

PUBLIC HEALTH REGION 7-1993

REGIONAL TOTALS	1,820,160		!	0.9	150	!	8.2	261	!	14.3	1,148	\vdots	63.1
STATEWIDE TOTALS	17,958,512	86	;	0.5	849	:	4.7	1,924	!	10.7	4,581	!	25.5

REPORTED CASES OF HEPATITIS AND RATES PER 100,000 POPULATION

PUBLIC HEALTH REGION 7-1993

REPORTED CASES OF OTHER SELECTED DISEASES AND RATES PER 100,000 POPULATION
PUBLIC HEALTH REGION 7-1993

		GONORRHEA			CHLAMYDIA			P \& S SYPHILIS			TUBERCULOSIS		
COUNTY	1993 POP.	CASES		RATE									
BASTROP	42,714	21	!	49.2	58	:	135.8	0		0.0	3	\vdots	7.0
BELL	197,714	922	\vdots	466.3	1,332	!	673.7	37	!	18.7	10	\vdots	5.1
BLANCO	6,389	0	!	0.0	0	!	0.0	0	\vdots	0.0	1	!	15.7
BOSQUE	15,438	0	!	0.0	16	!	103.6	0	\vdots	0.0	0	\vdots	0.0
BRAZOS	124,101	168	!	135.4	359	\%	289.3	22	:	17.7	11	\vdots	8.9
BURLESON	14,174	14	\vdots	98.8	23	\vdots	162.3	2	\vdots	14.1	1	!	7.1
BURNET	24,216	10	!	41.3	46	!	190.0	1	:	4.1	2	,	8.3
CALDWELL	28,545	10	!	35.0	33	!	115.6	0	\vdots	0.0	4	!	14.0
CORYELL	66,951	40	!	59.7	81	!	121.0	2	\vdots	3.0	4	!	6.0
FALLS	18,418	77	!	418.1	71		385.5	1	:	5.4	2	!	10.9
FAYETTE	20,211	17	\vdots	84.1	22		108.9	0	!	0.0	3	!	14.8
FREESTONE	16,687	12	!	71.9	24		143.8	1	\vdots	6.0	0	!	0.0
GRIMES	20,107	36	!	179.0	61		303.4	9	!	44.8	0	:	0.0
HAMILTON	7,577	2	!	26.4	4		52.8	0	:	0.0	0	:	0.0
HAYS	74,561	62	!	83.2	278		372.8	3	\vdots	4.0	1	!	1.3
HILL	27,620	18	!	65.2	38		137.6	1	!	3.6	1	:	3.6
LAMPASAS	13,874	11	!	79.3	41		295.5	0	\vdots	0.0	1	:	7.2
LEE	13,437	17	!	126.5	21		156.3	1	!	7.4	1	!	7.4
LEON	13,578	8	!	58.9	14		103.1	1	!	7.4	0	;	0.0
LIMESTONE	21,148	42	\vdots	198.6	55		260.1	4	\vdots	18.9	5	\vdots	23.6
LLANO	11,936	1	!	8.4	15		125.7	0	!	0.0	1	\vdots	8.4
MC LELLAN	190,229	12	!	6.3	10		5.3	1	\vdots	0.5	12	!	6.3
MADISON	11,415	843	!	7,385.0	712		6,237.4	13	\vdots	113.9	1	!	8.8
MILAM	23,010	37	!	160.8	89		386.8	18	!	78.2	1	\vdots	4.3
MILLS	4,491	0	!	0.0	2		44.5	0	!	0.0	0	!	0.0
ROBERTSON	15,977	39	!	244.1	37		231.6	12	!	75.1	2	\vdots	12.5
SAN SABA	5,943	0	:	0.0	6		101.0	0	!	0.0	0	!	0.0
TRAVIS	599,018	1,269		211.8	2,059		343.7	100	!	16.7	104	\vdots	17.4
WASHINGTON	27,015	36	!	133.3	27		99.9	16	!	59.2	1	!	3.7
WILLIAMSON	161,673	62	!	38.3	170		105.2	1	\vdots	0.6	3	!	1.9
REGIONAL TOTALS	1,820,160	3,786	\%	208.0	5,704		313.4	246	\vdots	13.5	175	!	9.6
STATEWIDE TOTALS	17,958,512	30,122		167.7	43,874		244.3	2,530	!	14.1	2,393	!	13.3

PUBLIC HEALTH REGION 7-1993

		MEASLES		MUMPS		PERTUSSIS		RUBELLA	
COUNTY	1993 POP.	CASES	RATE	CASES	RATE	CASES	RATE	CASES	RATE
BASTROP	42,714	0	0.0		2.3	I	2.3	0	0.0
BELL	197,714	0	0.0	4	2.0	0	0.0	0	0.0
BLANCO	6,389	0	0.0		15.7	0	0.0	0	0.0
BOSQUE	15,438	0	0.0	0	0.0	0	0.0	0	0.0
BRAZOS	124,101	0	0.0	0	0.0	4	3.2	0	0.0
BURLESON	14,174	0	0.0	0	0.0	0	0.0	0	0.0
BURNET	24,216	0	0.0	0	0.0	0	0.0	0	0.0
CALDWELL	28,545	0	0.0	0	0.0	0	0.0	0	0.0
CORYELL	66,951	0	0.0	0	0.0	0	0.0	0	0.0
FALLS	18.418	0	0.0	0	0.0	0	0.0	0	0.0
FAYETTE	20,211	0	0.0	0	0.0	0	0.0	0	0.0
FREESTONE	16,687	0	0.0	0	0.0	1	6.0	0	0.0
GRIMES	20,107	0	0.0	1	5.0	0	0.0	0	0.0
HAMILTON	7,577	0	0.0	0	0.0	0	0.0	0	0.0
HAYS	74,561	0	0.0	0	0.0	0	0.0	0	0.0
HILL	27,620	0	0.0	0	0.0	0	0.0	0	0.0
LAMPASAS	13,874	0	0.0	0	0.0	0	0.0	0	0.0
LEE	13,437	0	0.0	1	7.4	0	0.0	0	0.0
LEON	13,578	0	0.0	0	0.0	0	0.0	0	0.0
LIMESTONE	21,148	0	0.0	0	0.0	0	0.0	0	0.0
LLANO	11,936	0	0.0	1	8.4	0	0.0	0	0.0
MC LELLAN	190,229	0	0.0	0	0.0	0	0.0	0	0.0
MADISON	11,415	0	0.0		0.0	0	0.0	0	0.0
MILAM	23,010	0	0.0	0	0.0	0	0.0	0	0.0
MILLS	4,491	0	0.0	0	0.0	0	0.0	0	0.0
ROBERTSON	15,977	0	0.0		0.0	0	0.0	0	0.0
SAN SABA	5,943	0	0.0	0	0.0	0	0.0	0	0.0
TRAVIS	599,018	0	0.0		0.7	6	1.0	2	0.3
WASHINGTON	27.015	0	0.0	0	0.0	0	0.0	0	0.0
WILLIAMSON	161,673	0	0.0	1	0.6	1	0.6	0	0.0
REGIONAL TOTALS	1,820,160	0	0.0	14	0.8	13	0.7		0.1
STATEWIDE TOTALS	17,958,512	10	0.1	231	1.3	121	0.7	22	0.1

REPORTED CASES OF SELECTED VIRAL DISEASES AND RATES PER 100,000 POPULATION
PUBLIC HEALTH REGION 7-1993

Public Health Region 8

PUBLIC HEALTH REGION 8-1993

		AMEBIASIS		CAMPYLOBACTER		SALMONELLOSIS		SHIGELLOSIS	
COUNTY	1993 POP.	CASES	RATE	CASES	RATE	CASES	RATE	CASES	RATE
ATASCOSA	32,559	0	0.0	1^{\prime}	3.1	1	3.1	3	9.2
BANDERA	11,618	0	0.0	0	0.0	1	8.6	0	0.0
BEXAR	1,247,969	3	0.2	107'	8.6	128	10.3	646	51.8
CALHOUN	19,437	0 !	0.0	1	5.1	4	20.6	3	15.4
COMAL	58,451	0	0.0	4	6.8	10	17.1	16	27.4
DE WITT	18,888	1	5.3	0	0.0	1	5.3	2	10.6
DIMMITT	10,695	0	0.0	0	0.0	- 1	9.4	2	18.7
EDWARDS	2,340	0	0.0	0	0.0	0	0.0	0	0.0
FRIO	14,970	0	0.0	0	0.0	0 :	0.0	1	6.7
GILLESPIE	18,090	0	0.0	0	0.0	1	5.5	3	16.6
GOLIAD	6,214	0	0.0	0	0.0	0	0.0	0	0.0
GONZALES	17,508	0	0.0	0	0.0	2	11.4	4	22.8
GUADELUPE	70,800	0 :	0.0	3	4.2	2	2.8	20	28.2
JACKSON	13,101	0	0.0	0	0.0	1	7.6	3	22.9
KARNES	12,696	0	0.0	1	7.9	1	7.9	0	0.0
KENDALL	15,979	0	0.0	2	12.5	0	0.0	1	6.3
KERR	38,230	0	0.0	2	5.2	4	10.5	5	13.1
KINNEY	3,219	0	0.0	0	0.0	0 :	0.0	0	0.0
LA SALLE	6,055	0	0.0	0	0.0	0	0.0	0	0.0
LAVACA	18,491	0	0.0	1	5.4	2 !	10.8	2	10.8
MAVERICK	38,809	0	0.0	2	5.2	2 !	5.2	9	23.2
MEDINA	29,964	0	0.0	0	0.0	0 :	0.0	23	76.8
REAL	2,468	0	0.0	0	0.0	0 :	0.0	0	0.0
UVALDE	24,154	0	0.0	4	16.6	4	16.6	4	16.6
VAL VERDE	40,577	0	0.0	3	7.4	5 !	12.3	0	0.0
VICTORIA	76,340	0 !	0.0	6	7.9	31 !	40.6	134	175.5
WILSON	24,880	0 !	0.0	1	4.0	0 !	0.0	1	4.0
ZAVALA	12,650	0 !	0.0	0	0.0	1 !	7.9	1	7.9

REPORTED CASES OF HEPATITIS AND RATES PER 100,000 POPULATION

PUBLIC HEALTH REGION 8-1993

		HEPATITIS A			HEPATITIS B			HEPATITIS C			HEPATITIS UNSPECIFIED		
COUNTY	1993 POP.	CASES		RATE									
ATASCOSA	32,559	5	\vdots	15.4	1	$\dot{1}$	3.1	0	\vdots	0.0	0		0.0
BANDERA	11,618	0	!	0.0	0	:	0.0	0	!	0.0	0		0.0
BEXAR	124,7969	344	$!$	27.6	101	!	8.1	25	$\stackrel{\square}{1}$	2.0	0		0.0
CALHOUN	19,437	0	\vdots	0.0	0	!	0.0	0	\vdots	0.0	0		0.0
COMAL	58,451	12	\vdots	20.5	2	!	3.4	6	!	10.3	0		0.0
DE WITT	18,888	0	!	0.0	0	\vdots	0.0	0	\vdots	0.0	0		0.0
DIMMITT	10,695	0	\vdots	0.0	0	!	0.0	0	!	0.0	0		0.0
EDWARDS	2,340	1	!	42.7	0	;	0.0	0	!	0.0	0		0.0
FRIO	14,970	0	!	0.0	0	!	0.0	0	!	0.0	0		0.0
GILLESPIE	18,090	0	!	0.0	0	!	0.0	0	!	0.0	0		0.0
GOLIAD	6,214	0	:	0.0	0	:	0.0	0	\vdots	0.0	0		0.0
GONZALES	17,508	9	!	51.4	1	!	5.7	0	!	0.0	0		0.0
GUADELUPE	70.800	0	!	0.0	6	!	8.5	4	\vdots	5.6	0		0.0
JACKSON	13,101	0	!	0.0	0	:	0.0	0	:	0.0	0		0.0
KARNES	12,696	0	\vdots	0.0	0	\vdots	0.0	0	\vdots	0.0	0		0.0
KENDALL	15,979	0	:	0.0	0	!	0.0	0	\vdots	0.0	0		0.0
KERR	38,230	1	!	2.6	1	\vdots	2.6	3	!	7.8	5		13.1
KINNEY	3,219	1	!	31.1	0	!	0.0	0	\vdots	0.0	0		0.0
LA SALLE	6,055	0	\vdots	0.0	0	:	0.0	0	\vdots	0.0	0		0.0
LAVACA	18,491	1	!	5.4	1	;	5.4	0	!	0.0	0		0.0
MAVERICK	38,809	32	!	82.5	5	!	12.9	1	!	2.6	0		0.0
MEDINA	29,964	15	!	50.1	0	!	0.0	0	!	0.0	0	!	0.0
REAL	2,468	0	\vdots	0.0	0	!	0.0	0	$!$	0.0	0		0.0
UVALDE	24,154	4	!	16.6	2	\vdots	8.3	0	\vdots	0.0	0		0.0
VAL VERDE	40,577	18	!	44.4	0	!	0.0	0	!	0.0	3		7.4
VICTORIA	76,340	14	$!$	18.3	1	$!$	1.3	4	\vdots	5.2	0		0.0
WILSON	24,880	0	!	0.0	0	!	0.0	0	!	0.0	0		0.0
ZAVALA	12,650	1	\vdots	7.9	0	\vdots	0.0	0	\vdots	0.0	0	!	0.0

| REGIONAL TOTALS | $1,889,145$ | 458 | \vdots | 24.2 | 121 | \vdots | 6.4 | 43 | \vdots | 2.3 | 8 | \vdots | 0.4 |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- |

REPORTED CASES OF OTHER SELECTED DISEASES AND RATES PER 100,000 POPULATION
PUBLIC HEALTH REGION 8-1993

REPORTED CASES OF SELECTED VACCINE PREVENTABLE DISEASES AND RATES PER 100,000 POPULATION

PUBLIC HEALTH REGION $8 \mathbf{~ - ~} 1993$

REPORTED CASES OF SELECTED VIRAL DISEASES AND RATES PER 100,000 POPULATION
PUBLIC HEALTH REGION 8-1993

REGIONAL TOTALS	1,889,145	117	6.2	4	0.2	3,826	202.5	1,230	65.1

Public Health Region 9

REPORTED CASES OF SELECTED GASTROINTESTINAL DISEASES AND RATES PER 100,000 POPULATION

PUBLIC HEALTH REGION 9-1993

REPORTED CASES OF HEPATITIS AND RATES PER 100,000 POPULATION

PUBLIC HEALTH REGION 9-1993

		HEPATITIS A		HEPATITIS B		HEPATITIS C		HEPATITIS UNSPECIFIED	
COUNTY	1993 POP.	CASES	RATE	CASES	RATE	CASES	RATE	CASES	RATE
ANDREWS	14,691	0	0.0	1	6.8	0	0.0	0	0.0
BORDEN	809	0	0.0	0	0.0	0	0.0	0	0.0
COKE	3.432	0	0.0	0	0.0	0	0.0	0	0.0
CONCHO	3,132	0	0.0	0	0.0	0	0.0	0	0.0
CRANE	4,806	1	20.8	1	20.8	1	20.8	0	0.0
CROCKET	4,160	0	0.0	0	0.0	0	0.0	0	0.0
DAWSON	15,368	1	6.5	0	0.0	0	0.0	0	0.0
ECTOR	122,030	25	20.5	4	3.3	12	9.8	0	0.0
GAINES	14,418	0	0.0	1	6.9	0	0.0	0	0.0
GLASSCOCK	1,516	0	0.0	0	0.0	0	0.0	0	0.0
HOWARD	32,198	8	24.8	7	21.7	3	9.3	0	0.0
IRION	1,678	0	0.0	0	0.0	0	0.0	0	0.0
KIMBLE	4,113	0	0.0	0	0.0	0	0.0	0	0.0
LOVING	109	0	0.0	0	0.0	0	0.0	0	0.0
MC CULLOCH	8,781	0	0.0	1	11.4	0	0.0	0	0.0
MARTIN	5,122	0	0.0	0	0.0	0	0.0	0	0.0
MASON	3,379	0	0.0	0	0.0	0	0.0	0	0.0
MENARD	2,288	0	0.0	0	0.0	0	0.0	0	0.0
MIDLAND	113,268	7	6.2	13	11.5	6	5.3	1	0:9
PECOS	15,602	1	6.4	0	0.0	1	6.4	0	0.0
REAGAN	4,702	0	0.0	0	0.0	0	0.0	0	0.0
REEVES	16,418	0	0.0	0	0.0	0	0.0	0	0.0
SCHLEICHER	3,058	0	0.0	0	0.0	0	0.0	0	0.0
STERLING	1,480	0	0.0	0	0.0	0	0.0	0	0.0
SUTTON	4,257	0	0.0	0	0.0	0	0.0	0	0.0
TERRELL	1,448	0	0.0	0	0.0	0	0.0	0	0.0
TOM GREEN	102,447	3	2.9	3	2.9	0	0.0	0	0.0
UPTON	4,572	1	21.9	0	0.0	0	0.0	0	0.0
WARD	13,206	1	7.6	2 !	15.1	1	7.6	0	0.0
WINKLER	8,738	0	0.0	0	0.0	0	0.0	0	0.0

REGIONAL TOTALS	533,219	48	:	9.0	33	:	6.2		5	1	0.2

REPORTED CASES OF OTHER SELECTED DISEASES AND RATES PER 100,000 POPULATION
PUBLIC HEALTH REGION 9-1993

COUNTY		GONORRHEA		CHLAMYDIA		P \& S SYPHILIS		TUBERCULOSIS	
	1993 POP.	CASES	RATE	CASES	RATE	CASES	RATE	CASES	RATE
ANDREWS	14,691	9	61.3	14	$\vdots 95.3$	1	6.8	1	6.8
BORDEN	809	0	0.0	0	0.0	0	0.0	0	0.0
COKE	3,432	0	0.0	4	116.6	0	0.0	0	0.0
CONCHO	3,132	0	0.0	0	0.0	0	0.0	0	0.0
CRANE	4,806	5	104.0	24	499.4	0	0.0	0	0.0
CROCKET	4,160	0	0.0	5	120.2	0	0.0	0	0.0
DAWSON	15,368	4	26.0	19	123.6	0	0.0	1	6.5
ECTOR	122,030	213	174.5	413	338.4	10	8.2	10	8.2
GAINES	14,418	3	20.8	32	221.9	1	6.9	0	0.0
GLASSCOCK	1,516	0	0.0	0	0.0	0	0.0	0	0.0
HOWARD	32,198	20	62.1	63	195.7	1	3.1	2	6.2
IRION	1,678	2	119.2	1	59.6	0	0.0	1	59.6
KIMBLE	4,113	0	0.0	1.	24.3	0 !	0.0	1	24.3
LOVING	109	1	917.4	0	0.0	0 !	0.0	0	0.0
MC CULLOCH	8,781	3	34.2	8	91.1	1 !	11.4	0	0.0
MARTIN	5,122	0	0.0	0	0.0	$0 \quad \vdots$	0.0	0	0.0
MASON	3,379	2	59.2	14	414.3	1 !	29.6	0	0.0
MENARD	2,288	0	0.0	0	0.0	0 !	0.0	0	0.0
MIDLAND	113,268	146	128.9	224	197.8	14	12.4	2	1.8
PECOS	15,602	2	12.8	33	211.5	$7 \quad$:	44.9	4	25.6
REAGAN	4,702	0 !	0.0	1	21.3	0 :	0.0	0	0.0
REEVES	16,418	5	30.5	20	121.8	0 !	0.0	3	18.3
SCHLEICHER	3,058	0	0.0	.	0.0	0	0.0	0	0.0
STERLING	11,480	0	0.0	3	202.7	0	0.0	0	0.0
SUTTON	4,257	1 !	23.5	5	117.5	0	0.0	0	0.0
TERREL	1,448	0 !	0.0	0	0.0	0 !	0.0	0	0.0
TOM GREEN	102,447	124	121.0	241	235.2	0	0.0	5	4.9
UPTON	4,572	!	21.9	2	43.7	0	0.0	0	0.0
WARD	13,206	$4 \quad \vdots$	30.3	20	151.4	0	0.0	1	7.6
WINKLER	8,738	1	11.4	14	160.2	1	11.4	1	11.4

REGIONAL TOTALS	533,219	546	\vdots	102.4	1,161	\vdots	217.7	37	\vdots
6.9	32	\vdots	6.0						

[^1]PUBLIC HEALTH REGION 9-1993

		MEASLES		MUMPS			PERTUSSIS			RUBELLA		
COUNTY	1993 POP.	CASES	RATE	CASES		RATE	CASES		RATE	CASES		RATE
ANDREWS	14,691	0	0.0	1	:	6.8	0	\vdots	0.0	0	,	0.0
BORDEN	809	0	0.0	0	!	0.0	0	\vdots	0.0	0	\vdots	0.0
COKE	3,432	0	0.0	0	;	0.0	0	!	0.0	0	!	0.0
CONCHO	3,132	0	0.0	0	!	0.0	0	\vdots	0.0	0	!	0.0
CRANE	4,806	0	0.0	0	;	0.0	0	\vdots	0.0	0	!	0.0
CROCKET	4,160	0	0.0	0	\vdots	0.0	0	!	0.0	0	\vdots	0.0
DAWSON	15,368	0	0.0	0	:	0.0	0	\vdots	0.0	0	!	0.0
ECTOR	122,030	0	0.0	1	:	0.8	1	!	0.8	0	;	0.0
GAINES	14,418	0	0.0	0	\vdots	0.0	0	!	0.0	0	!	0.0
GLASSCOCK	1,516	0	0.0	0	\vdots	0.0	0	\vdots	0.0	0	:	0.0
HOWARD	32,198	0	0.0	0	\vdots	0.0	0	\vdots	0.0	0	!	0.0
IRION	1,678	0	0.0	0	!	0.0	0	$!$	0.0	0	1	0.0
KIMBLE	4,113	0	0.0	0	:	0.0	0	\vdots	0.0	0	:	0.0
LOVING	109	0	0.0	0	!	0.0	0	!	0.0	0	!	0.0
MC CULLOCH	8,781	0	0.0	1	!	11.4	0	!	0.0	0	:	0.0
MARTIN	5,122	0	0.0	0	!	0.0	0	!	0.0	0	!	0.0
MASON	3,379	0	0.0	0	\vdots	0.0	0	!	0.0	0	1	0.0
MENARD	2,288	0	0.0	0	\vdots	0.0	0	!	0.0	0	:	0.0
MIDLAND	113,268	0	0.0	5	\vdots	4.4	0	!	0.0	0	\vdots	0.0
PECOS	15,602	0	0.0	0	!	0.0	0	-	0.0	0	\vdots	0.0
REAGAN	4,702	0	0.0	1	!	21.3	0	!	0.0	0	\vdots	0.0
REEVES	16,418	0	0.0	1	\vdots	6.1	0	\vdots	0.0	0	\vdots	0.0
SCHLEICHER	3,058	0	0.0	0	\vdots	0.0	0	\vdots	0.0	0	:	0.0
STERLING	1,480	0	0.0	0	!	0.0	0	!	0.0	0	\vdots	0.0
SUTTON	4,257	0	0.0	0	:	0.0	0	!	0.0	0	:	0.0
TERRELL	1,448	0	0.0	0	\vdots	0.0	0	!	0.0	0	\vdots	0.0
TOM GREEN	102,447	0	0.0	1	!	1.0	0	!	0.0	0	\vdots	0.0
UPTON	4,572	0	0.0	0	!	0.0	0	!	0.0	0	!	0.0
WARD	13,206	0	0.0	0	!	0.0	0	!	0.0	0	\vdots	0.0
WINKLER	8,738	0	0.0	0	\vdots	0.0	0	!	0.0	0	!	0.0

REGIONAL TOTALS	533,219	0	!	0.0	11	\vdots	2.1	1	$!$	0.2	0	\vdots	0.0
STATEWIDE TOTALS	17,958,512	10	:	0.1	231	$!$	1.3	121	:	0.7	22	;	0.1

REPORTED CASES OF SELECTED VIRAL DISEASES AND RATES PER 100,000 POPULATION

PUBLIC HEALTH REGION 9-1993

		ASCEPTIC MENINGITIS		ENCEPHALITIS		INFLUENZA \& FLU-LIKE ILLNESS		CHICKENPOX	
COUNTY	1993 POP.	CASES	RATE	CASES	RATE	CASES	RATE	CASES	RATE
ANDREWS	14,691	1	6.8	0	0.0	0	: 0.0	0	0.0
BORDEN	809	0	0.0	0	0.0	0	! 0.0	0	0.0
COKE	3,432	0	0.0	0	0.0	0	: 0.0	0	0.0
CONCHO	3,132	0	0.0	0	0.0	0	! 0.0	0	0.0
CRANE	4,806	0	0.0	0	0.0	0	- 0.0	0	0.0
CROCKET	4,160	0	0.0	0	0.0	0	! 0.0	0	0.0
DAWSON	15,368	0	0.0	0	0.0	0	\% 0.0	0	0.0
ECTOR	122,030	2	1.6	0	0.0	1,589	1,302.1	149	122.1
GAINES	14,418	2	13.9	0 :	0.0	0	0.0	7	48.6
GLASSCOCK	1,516	0	0.0	0	0.0	0	0.0	0	0.0
HOWARD	32,198	0	0.0	0	0.0	0	0.0	0	0.0
IRION	1,678	0	0.0	0 :	0.0	0	0.0	0	0.0
KIMBLE	4,113	0	0.0	0	0.0	0	0.0	0	0.0
LOVING	109	0	0.0	0 !	0.0	0	0.0	0	0.0
MC CULLOCH	8,781	0	0.0	0 !	0.0	0	0.0	6	68.3
MARTIN	5,122	0	0.0	0	0.0	0	0.0	0	0.0
MASON	3,379	0	0.0	0 :	0.0	0	0.0	0	0.0
MENARD	2,288	0	0.0	0 :	0.0	0	0.0	0	0.0
MIDLAND	113,268	16	14.1	0 !	0.0	869	767.2	145	128.0
PECOS	15,602	0	0.0	0 :	0.0	0	0.0	1	6.4
REAGAN	4,702	0	0.0	0 !	0.0	0	0.0	0	0.0
REEVES	16,418	1	6.1	0 ;	0.0	1	6.1	2	12.2
SCHLEICHER	3,058	0	0.0	0 !	0.0	40	1,308.0	0	0.0
STERLING	1,480	0	0.0	0 ;	0.0	0	0.0	0	0.0
SUTTON	4,257	0 !	0.0	0	0.0	0	0.0	0	0.0
TERRELL	1,448	0 !	0.0	0 !	0.0	0	0.0	0	0.0
TOM GREEN	102,447	$22 \quad \vdots$	21.5	1	1.0	259	252.8	165	161.1
UPTON	4,572	$0 \quad$!	0.0	0	0.0	0	0.0	0	0.0
WARD	13,206	0 !	'0.0	0 !	0.0	0	0.0	1	7.6
WINKLER	8,738	0 !	0.0	0 :	0.0	0	0.0	2	22.9

Public Health Region 10

PUBLIC HEALTH REGION 10-1993
REPORTED CASES OF SELECTED VIRAL DISEASES AND RATES PER $\mathbf{1 0 0 , 0 0 0}$ POPULATION

REPORTED CASES OF HEPATITIS AND RATES PER 100,000, POPULATION

REPORTED CASES OF SELECTED GASTROINTESTINAL DISEASES AND RATES PER 100,000 POPULATION

PUBLIC HEALTH REGION 10-1993
REPORTED CASES OF OTHER SELECTED DISEASES AND RATES PER 100,000 POPULATION

REPORTED CASES OF SELECTED VACCINE PREVENTABLE DISEASES AND RATES PER 100,000 POPULATION

		MEASLES		MUMPS		PERTUSSIS		RUBELLA	
COUNTY	1993 POP.	CASES	RATE	CASES	RATE	CASES	RATE	CASES	RATE
BREWSTER	9606	0	0.0	1	10.4	0	0.0	0	0.0
CULBERSON	3636	0	0.0	0	0.0	0	0.0	0	0.0
EL PASO	641484	1	0.2	14	2.2	4	0.6	2	0.3
HUDSPETH	3065	0	0.0	0	0.0	0	0.0	0	0.0
JEFF DAVIS	2027	0	0.0	0	0.0	0	0.0	0	0.0
PRESIDIO	7233	0	0.0	0	0.0	0	0.0	0	0.0

REGIONAL TOTALS	669,044	1	0.1	15	!	2.2	4	0.6	2	!	0.3
STATEWIDE TOTALS	17,585,512	10	0.1	231	\vdots	1.3	121	0.7	22	!	0.1

Public Health Region 11

REPORTED CASES OF SELECTED GASTROINTESTINAL DISEASES AND RATES PER 100,000 POPULATION
PUBLIC HEALTH REGION 11-1993

		AMEBIASIS		CAMPYLOBACTER		SALMONELLOSIS			SHIGELLOSIS		
COUNTY	1993 POP.	CASES	RATE	CASES	RATE	CASES		RATE	CASES		RATE
ARANSAS	18,525	0	0.0	0	0.0	3	!	16.2	0	!	0.0
BEE	27,779	0	0.0	0	0.0	0	!	0.0	0		0.0
BROOKS	8,461	0	0.0	0	0.0	1	!	11.8	1		11.8
CAMERON	280,658	15	5.3	4	1.4	18	\vdots	6.4	27		9.6
DUVAL	13,310	0	0.0	0	0.0	3	!	22.5	3	\vdots	22.5
HIDALGO	426,640	0	0.0	1	0.2	38	\vdots	8.9	40		9.4
JIM HOGG	5,542	0	0.0	0	0.0	0	!	0.0	0	\vdots	0.0
JIM WELLS	38,344	0	0.0	0	0.0	6	!	15.6	3	!	7.8
KENEDY	477	0	0.0	0	0.0	1	;	209.6	0	:	0.0
KLEBERG	31,830	0	0.0	1	3.1	5	!	15.7	6	!	18.9
LIVE OAK	9,716	0	0.0	0	0.0	1	!	10.3	0		0.0
MC MULLEN	837	0	0.0	0	0.0	0	!	0.0	0	!	0.0
NUECES	302,763	4	1.3	19	6.3	57	\vdots	18.8	150	!	49.5
REFUGIO	8,092	0	0.0	0	0.0	4	!	49.4	0	!	0.0
SAN PATRICIO	61,585	0	0.0	0	0.0	19	\vdots	30.9	10	!	16.2
STARR	46,530	0	0.0	0	0.0	0	!	0.0	0	!	0.0
WEBB	147,760	0	0.0	5	3.4	34	\vdots	23.0	47	!	31.8
WILLACY	18,391	0	0.0	1	5.4	0	!	0.0	0	!	0.0
ZAPATA	10,323	0	0.0	1	9.7	0	-	0.0	1		9.7

REGIONAL TOTALS	$1,457,563$	19	\vdots	1.3	32	\vdots	2.2	190	\vdots	13.0	288	\vdots	19.8

STATEWIDE TOTALS	$17,958,512$	86	\vdots	0.5	849	\vdots	4.7	1924	10.7	4581
\vdots	25.5									

REPORTED CASES OF HEPATITIS AND RATES PER 100,000 POPULATION
PUBLIC HEALTH REGION 11-1993

		HEPATITIS A			HEPATITIS B			HEPATITIS C		HEPATITIS UNSPECIFIED	
COUNTY	1993 POP.	CASES		RATE	CASES		RATE	CASES	RATE	CASES	RATE
ARANSAS	18,525	1	\vdots	5.4	1	\vdots	5.4	0	0.0	0	0.0
BEE	27,779	2	\vdots	7.2	0	!	0.0	0	0.0	0	0.0
BROOKS	8,461	0	!	0.0	0	\vdots	0.0	0	0.0	0	0.0
CAMERON	280,658	50	\vdots	17.8	14	!	5.0	1	0.4	26	9.3
DUVAL	13,310	1	!	7.5	0	!	0.0	0	0.0	0	0.0
HIDALGO	426,640	84	\vdots	19.7	2	!	0.5	6	1.4	2	0.5
JIM HOGG	5,542	0	!	0.0	0	\vdots	0.0	0	0.0	0	0.0
JIM WELLS	38,344	1	\vdots	2.6	0	\vdots	0.0	0	0.0	0	0.0
KENEDY	477	0	\vdots	0.0	0	!	0.0	0	0.0	0	0.0
KLEBERG	31,830	1	!	3.1	1	\vdots	3.1	1	3.1	1	3.1
LIVE OAK	9,716	0	!	0.0	0	:	0.0	0	0.0	0	0.0
MC MULLEN	837	0	\vdots	0.0	0	!	0.0	0	0.0	0	0.0
NUECES	302,763	113	!	37.3	30	!	9.9	9	3.0	0	0.0
REFUGIO	8,092	1	!	12.4	0	!	0.0	0	0.0	0	0.0
SAN PATRICIO	61,585	10	!	16.2	6	!	9.7	1	1.6	0	0.0
STARR	46,530	13	!	27.9	0	!	0.0	0	0.0	0	0.0
WEBB	147,760	88	!	59.6	1	!	0.7	2	1.4	3	2.0
WILLACY	18,391	1	!	5.4	0	!	0.0	1	5.4	1	5.4
ZAPATA	10,323	1	\vdots	9.7	0	\vdots	0.0	0	0.0	0	0.0
REGIONAL TOTALS	1,459,556	367	;	25.1	55	:	3.8	21	1.4	33	2.3
STATEWIDE TOTALS	17,958,512	2,798	!	15.6	1,354	:	7.5	384	2.1	14,291	79.6

REPORTED CASES OF OTHER SELECTED DISEASES AND RATES PER 100,000 POPULATION
PUBLIC HEALTH REGION 11-1993

REGIONAL TOTALS	$1,459,556$	552	\vdots	37.8	2,827	\vdots	193.7	257	\vdots	17.6	310	\vdots

STATEWIDE TOTALS
$17,958,512$ 30,122 43,874 9,904 2,393 13.3
reported cases of selected vaccine preventable diseases and rates per $\mathbf{1 0 0 , 0 0 0}$ population
PUBLIC HEALTH REGION 11-1993

		MEASLES			MUMPS			PERTUSSIS			RUBELLA		
COUNTY	1993 POP.	CASES		RATE									
ARANSAS	18,525	0	:	0.0	0	:	0.0	0	:	0.0	0	:	0.0
BEE	27,779	0	!	0.0		\vdots	0.0	0	\vdots	0.0	0	\vdots	0.0
BROOKS	8,461	0	:	0.0	0	!	0.0	0	;	0.0	0	!	0.0
CAMERON	280,658	0	!	0.0		!	10.0	1	!	0.4	0	!	0.0
DUVAL	13,310	0	!	0.0	0	\vdots	0.0	0	!	0.0	0	!	0.0
HIDALGO	426,640	0	!	0.0	0	!	0.0	3	!	0.7	0	!	0.0
JIM HOGG	5,542	0	\vdots	0.0	0	:	0.0	0	:	0.0	0	!	0.0
JIM WELLS	38,344	0	!	0.0	0	!	0.0	0	!	0.0	0	!	0.0
KENEDY	477	0	!	0.0	0	!	0.0	0	!	0.0	0	$\stackrel{\square}{3}$	0.0
KLEBERG	31,830	0	:	0.0	0	$\stackrel{\square}{\square}$	0.0	0	:	0.0	0	:	0.0
LIVE OAK	9,716	0	!	0.0	0	!	0.0	0	:	0.0	0	:	0.0
MC MULLEN	837	0	:	0.0	0	:	0.0	0	!	0.0	0	!	0.0
NUECES	302,763	0	:	0.0	0	:	0.0	0	:	0.0	0	:	0.0
REFUGIO	8,092	0	\vdots	0.0	0	!	0.0	0	!	0.0	0	:	0.0
SAN PATRICIO	61,585	0	\vdots	0.0	0	!	0.0	0	;	0.0	0	!	0.0
STARR	46,530	0	!	0.0	2	-	4.3	2	!	4.3	0	!	0.0
WEBB	147,760	0	:	0.0	3	:	2.0	0	!	0.0	2	三	1.4
WILLACY	18,391	0	:	0.0		!	0.0	0	!	0.0	0	!	0.0
ZAPATA	10,323	0	\vdots	0.0	0	!	0.0	0	\vdots	0.0	0	!	0.0

REGIONAL TOTALS	1,459,556	0	\vdots	0.0	33	!	2.3	6	!	0.4	2	!	0.1
STATEWIDE TOTALS	17,958,512	10		0.1	231		1.3	121		0.7	22		0.1

PUBLIC HEALTH REGION 11-1993

		ASCEPTIC MENINGITIS		ENCEPHALITIS		INFLUENZA \& FLU-LIKE ILLNESS		CHICKENPOX	
COUNTY	1993 POP.	CASES	RATE	CASES	RATE	CASES	RATE	CASES	RATE
ARANSAS	18,525	0	0.0	0	0.0	0	$\vdots 0.0$	0	0.0
BEE	27,779	0	0.0	0	0.0	0	! 0.0	0	0.0
BROOKS	8,461	0	0.0	0	0.0	0	$\vdots 0.0$	0	0.0
CAMERON	280,658	5	1.8	0	0.0	1,112	- 396.2	575	204.9
DUVAL	13,310	0	0.0	0	0.0	0	$\vdots 0.0$	18	135.2
HIDALGO	426,640	6	1.4	0	0.0	0	! 0.0	45	10.5
JIM HOGG	5,542	0	0.0		0.0	0	$\vdots 0.0$	0	0.0
JIM WELLS	38,344	0	0.0	0	0.0	0	! 0.0	0	0.0
KENEDY	477	0	0.0		0.0	0	! 0.0	0	0.0
KLEBERG	31,830	0	0.0		0.0	0	$\vdots 0.0$	0	0.0
LIVE OAK	9,716	0	0.0	0	0.0	0	! 0.0	0	0.0
MC MULLEN	837	0	0.0	0	0.0	0	- 0.0	24	2,867.4
NUECES	302,763	13	4.3	3	1.0	8,583	2,834.9	1,403	463.4
REFUGIO	8,092	0	0.0	0	0.0	0	0.0	0	0.0
SAN PATRICIO	61,585	0	0.0	0	0.0	15	24.4	125	203.0
STARR	46,530	0	0.0	0	0.0	0	0.0	2	4.3
WEBB	147,760	1	0.7	0	0.0	98	66.3	1	0.7
WILLACY	18,391	0	0.0	0	0.0	0	0.0	33	179.4
ZAPATA	10,323	0	0.0	0	0.0	3	29.1	6	58.1

REGIONAL TOTALS	1,457,563	25	1.7	3	0.2	9,811	673.1	2,232	153.1
STATEWIDE TOTALS	17,958,512	1,329	7.4	61	0.3	277,453	1,545.0	14,291	79.6

Appendix A

TABLE I

REPORTED CASES OF SELECTED DISEASES IN TEXAS

 1983-1993| DISEASE | 1993 | 1992 | 1991 | 1990 | 1989 | 1988 | 1987 | 1986 | 1985 | 1984 | 1983 |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| AMEBIASIS | 86 | 108 | 86 | 139 | 159 | 252 | 290 | 394 | 279 | 356 | 412 |
| BOTULISM | 2 | 1 | 4 | 7 | 4 | 4 | 4 | 5 | 4 | 9 | 3 |
| BRUCELLOSIS | 34 | 27 | 36 | 18 | 23 | 22 | 51 | 18 | 47 | 26 | 84 |
| CAMPYLOBACTERIOSIS | 849 | 996 | 810 | 739 | 625 | 745 | 780 | 803 | 666 | 198 | - |
| CHICKENPOX | 14291 | 20554 | 19409 | 26636 | 23722 | 20085 | 23228 | 23221 | 20758 | 16124 | 15031 |
| CHOLERA | 2 | 5 | 3 | 0 | 0 | 1 | 0 | 0 | 0 | 0 | 0 |
| COCCIDIOIDOMYCOSIS | 67 | 68 | 42 | 52 | 46 | 56 | 45 | 50 | 21 | 4 | - |
| DENGUE | 2 | 0 | 2 | 0 | 2 | 0 | 0 | 17 | 1 | 0 | 0 |
| ENCEPHALITIS | 61 | 89 | 121 | 74 | 60 | 74 | 118 | 191 | 144 | 114 | 163 |
| GONORRHEA | 30122 | 35517 | 43282 | 43231 | 45786 | 45639 | 51688 | 63376 | 66728 | 65802 | 76903 |
| HANSEN'S DISEASE | 31 | 52 | 38 | 37 | 25 | 35 | 31 | 29 | 28 | 31 | 35 |
| H. INFLUENZAE INFECTIONS | 51 | 42 | 152 | 625 | 797 | 843 | 747 | 647 | 554 | 524 | 394 |
| HEPATITIS A | 2798 | 1828 | 2663 | 2722 | 3211 | 2739 | 1886 | 2137 | 2565 | 2605 | 3030 |
| HEPATITIS B | 1354 | 1528 | 1958 | 1789 | 1853 | 1654 | 1487 | 1500 | 1513 | 1544 | 1234 |
| HEPATITIS NANB | 28 | 26 | 144 | 130 | 236 | 149 | 161 | 205 | 178 | 144 | - |
| HEPATITIS UNSPECIFIED | 157 | 191 | 260 | 287 | 530 | 576 | 599 | 854 | 1290 | 1695 | 2387 |
| HISTOPLASMOSIS | 69 | 79 | 66 | 142 | 106 | 133 | 71 | 77 | 44 | 10 | - |
| INFLUENZA/FLU-LIKE ILLNESS | 277453 | 155568 | 386911 | 314372 | 134604 | 109871 | 62192 | 83524 | 96164 | 176900 | 92160 |
| LEGIONELLOSIS | 22 | 24 | 23 | 25 | 50 | 20 | 38 | 41. | 29 | 27 | - |
| LISTERIOSIS | 28 | 26 | 52 | 32 | 40 | 45 | 42 | 28 | - | - | - |
| LYME DISEASE | 48 | 113 | 57 | 44 | 82 | 25 | 33 | 9 | - | \bullet | - |
| MALARIA | 48 | 45 | 75 | 80 | 79 | 73 | 56 | 84 | 93 | 77 | 54 |
| MEASLES | 10 | 1097 | 294 | 4409 | 3313 | 286 | 452 | 398 | 450 | 642 | 37 |
| MENINGITIS, ASEPTIC | 1329 | 1242 | 1275 | 811 | 836 | 675 | 758 | 1383 | 989 | 645 | 1175 |
| MENINGITIS, OTHER/BACTERIAL | 262 | 380 | 337 | 345 | 371 | 385 | 354 | 533 | 423 | 301 | - |
| MENINGOCOCCAL INFECTIONS | 157 | 111 | 100 | 93 | 93 | 98 | 126 | 138 | 132 | 180 | 188 |
| MUMPS | 231 | 388 | 363 | 470 | 551 | 327 | 338 | 239 | 321 | 219 | 225 |
| PERTUSSIS | 121 | 161 | 143 | 158 | 366 | 158 | 111 | 112 | 379 | 60 | 95 |
| RMSF | 7 | 1 | 2 | 6 | 19 | 22 | 22 | 21 | 33 | 53 | 108 |
| RUBELLA | 22 | 10 | 16 | 99 | 64 | 30 | 5 | 78 | 52 | 75 | 117 |
| SALMONELLOSIS | 1924 | 1933 | 2317 | 2315 | 2277 | 2334 | 2803 | 2445 | 2442 | 2339 | 2838 |
| SHIGELLOSIS | 4581 | 3568 | 2178 | 3550 | 1654 | 2826 | 2087 | 2454 | 1718 | 1659 | 2206 |
| SYPHILIS, PRIMARY/SECONDARY. | 9904 | 3316 | 4970 | 5165 | 4267 | 3124 | 3071 | 3967 | 4610 | 5136 | 6254 |
| TETANUS | 7 | 5 | 10 | 7 | 5 | 6 | 5 | 12 | 9 | 10 | 8 |
| TUBERCULOSIS | 2393 | 2510 | 2525 | 2242 | 1915 | 1901 | 1757 | 1890 | 1891 | 1762 | 1965 |
| TULAREMIA | 5 | 0 | 3 | 3 | 1 | 3 | 5 | 8 | 8 | 9 | 13 |
| TYPHOID FEVER | 15 | 23 | 31 | 28 | 20 | 3 | 36 | 28 | 32 | 30 | 72 |
| TYPHUS FEVER, MURINE | 12 | 18 | 22 | 36 | 30 | 30 | 34 | 52 | 25 | 37 | 46 |
| VIBRIO INFECTIONS | 17 | 15 | 25 | 25 | 17 | 27 | 20 | - | - | - | - |

TABLE II

REPORTED CASES OF SELECTED DISEASES IN TEXAS PER 100,000 POPULATION 1983-1993

DISEASE	1993	1992	1991	1990	1989	1988	1987	1986	1985	1984	1983
AMEBIASIS	. 5	. 6	. 5	. 8	. 9	1.5	1.7	2.4	1.7	2.3	2.7
BOTULISM	. 0	. 0	. 0	. 0	. 0	. 0	. 0	. 0	. 0	. 1	. 0
BRUCELLOSIS	. 2	. 2	. 2	. 1	. 1	. 1	. 3	. 1	. 3	. 2	. 6
CAMPYLOBACTERIOSIS	4.8	5.7	4.7	4.4	3.6	4.3	4.6	4.8	4.1	1.3	-
CHICKENPOX	81.3	116.7	112.5	156.8	135.8	116.3	162.3	138.6	128.7	102.7	98.0
CHOLERA	. 0	. 0	. 0	. 0	. 0	. 0	. 0	. 0	. 0	. 0	. 0
COCCIDIOIDOMYCOSIS	. 4	. 4	. 2	. 3	. 3	. 3	. 3	. 3	. 1	. 0	-
DENGUE	. 0	. 0	. 0	. 0	. 0	. 0	. 0	. 1	. 0	. 0	. 0
ENCEPHALITIS	. 3	. 5	. 7	. 4	. 3	. 4	. 7	1.1	. 9	. 7	1.0
GONORRHEA	171.3	201.6	250.8	254.5	262.1	264.3	303.6	378.3	413.7	419.1	501.1
HANSEN'S DISEASE	. 2	. 3	. 2	. 2	. 1	. 2	. 2	. 2	. 2	. 2	. 2
H. INFLUENZAE INFECTIONS	. 3	. 2	. 9	3.7	4.6	4.9	4.4	3.9	3.4	3.3	-
HEPATITIS A	15.9	10.4	15.4	16.0	18.4	15.9	11.1	12.8	15.9	16.6	19.7
HEPATITIS B	7.7	8.7	11.3	10.5	10.6	9.6	8.7	9.0	9.4	9.8	8.0
HEPATITIS NANB	. 1	. 1	. 8	. 8	1.4	. 9	1.0	1.2	1.1	. 9	-
HEPATITIS UNSPECIFIED	. 9	1.1	1.5	1.7	3.0	3.3	3.5	5.1	8.0	10.8	15.6
HISTOPLASMOSIS	. 3	. 4	. 4	. 8	. 6	. 8	. 4	. 5	. 3	. 1	-
INFLUENZA/FLU-LIKE MLNESS	1577.7	883.1	2241.7	1850.7	770.5	636.3	365.3	498.5	596.2	1126.7	600.6
LEGIONELLOSIS	. 1	. 1	. 1	. 1	. 3	. 1	. 2	. 2	. 2	. 2	-
LISTERIOSIS	. 2	. 1	. 3	. 2	. 2	. 3	. 3	. 2	-	-	-
LYME DISEASE	. 3	. 6	. 3	. 3	. 5	1	. 2	. 1	-	-	-
MALARIA	. 3	. 3	. 4								
MEASLES	. 1	6.2	1.7	26.0	19.0	1.7	2.7	2.4	2.8	4.1	. 2
MENINGITIS, ASEPTIC	7.6	7.1	7.4	4.8	4.8	3.9	4.5	8.3	6.1	4.1	7.7
MENINGITIS, OTHER/BACTERIAL	1.5	2.2	2.0	2.0	2.1	2.2	2.1	3.2	2.6	1.9	-
MENINGOCOCCAL INFECTIONS	. 9	. 6	. 6	. 5	. 5	. 6	. 7	. 8	. 8	1.2	1.2
MUMPS	1.3	2.2	2.1	2.8	3.2	1.9	2.0	1.4	2.0	1.4	1.5
PERTUSSIS	. 7	. 9	. 8	. 9	2.1	. 9	. 7	. 7	2.4	. 4	. 6
RMSF	. 0	. 0	. 0	. 0	. 1	. 1	. 1	. 1	. 2	. 3	. 7
RUBELLA	. 1	. 1	. 1	. 6	. 4	. 2	. 0	. 5	. 3	. 5	. 8
SALMONELLOSIS	10.9	11.0	13.4	13.6	13.0	13.5	16.5	14.6	15.1	14.9	18.5
SHIGELLOSIS	26.0	20.3	12.6	20.9	9.5	16.4	12.3	14.7	10.7	10.6	14.4
SYPHILIS, PRIMARY/SECONDARY	56.3	18.8	28.8	30.4	24.4	18.1	18.0	23.7	28.6	32.7	40.8
TETANUS	. 0	. 0	. 1	. 0	. 0	. 0	1	. 1	. 2	. 1	-
TUBERCULOSIS	13.6	14.2	14.6	13.2	11.0	11.0	10.3	11.3	11.7	11.2	12.8
TULAREMIA	. 0	. 0	. 0	. 0	. 0	. 0	. 0	. 1	. 1	.1	. 1
TYPHOID FEVER	. 1	. 1	. 2	. 2	. 1	. 2	. 2	. 2	. 2	. 2	. 5
TYPHUS FEVER, MURINE	. 1	. 1	. 1	. 2	. 2	. 2	. 2	. 3	-	-	\cdots
VIBRIO INFECTIONS	. 1	. 1	1	. 1	. 1	. 2	. 1		-	-	\checkmark

TABLE III

REPORTED CASES OF SELECTED DISEASES BY MONTH OF ONSET TEXAS, 1993

DISEASE	JAN	FEB	MAR	APR	MAY	JUN	JUL	AUG	SEP	OCT	NOV	DEC
AMEBIASIS	10	3	4	6	10	7	6	7	5	10	12	6
BOTULISM	0	0	0	0	0	0	1	1	0	0	0	0
BRUCELLOSIS	0	3	2	4	6	3	2	1	6	5	1	1
CAMPYLOBACTERIOSIS	68	57	60	72	95	113	88	76	51	56	71	39
CHOLERA	0	0	0	0	0	0	2	0	0	0	0	0
COCCIDIOIDOMYCOSIS	1	4	7 (14	9	5	4	6	2	12	0	3
DENGUE	1	0	0	0	0	0	1	0	0	0	0	0
ENCEPHALITIS	9	5	4	5	6	1	8	12	5	1	4	1
GONORRHEA -	2256	2267	2523	2331	2150	2832	2699	3047	2717	2659	2445	2196
HANSEN'S DISEASE	0	4	2	6	2	6	3	1	6	0	1	0
H. INFLUENZAE INFECTIONS	4	6	4	3	6	7	5	11	3	3	4	5
HEPATITIS A	180	150	181	173	187	206	247	312	346	293	232	271
HEPATITIS B	111	120	135	125	103	109	134	107	124	108	91	75
HEPATITIS C	25	26	25	37	26	29	46	36	42	34	22	47
HEPATITIS NANB	3	2	3	2	3	2	1	4	2	3	2	1
HEPATITIS UNSPECIFIED	19	17	19	15	19	17	12	13	5	5	13	3
HISTOPLASMOSIS	7	11	6	5	4	5	7	3	2	4	10	5
LEGIONELLOSIS	0	2	3	2	1	3	0	2	5	4	0	0
LISTERIOSIS	2	0	0	1	3	1	1	5	4	4	5	2
LYME DISEASE	5	0	7	7	7	5	5	2	6	1	1	2
MALARIA	6	2	4	3	2	7	3	10	6	0	2	3
MEASLES	0	0	2	2	4	2	0	0	0	0	0	0
MENINGITIS, ASEPTIC	54	43	57	68	136	293	248	162	98	58	69	55
MENINGITIS, OTHER/BACTERIAL	26	24	40	16	16	15	13	19	27	22	23	31
MENINGOCOCCAL INFECTIONS	15	19	21	14	6	10	3	11	12	8	11	26
MUMPS	27	21	26	20	21	14	12	15	25	21	31	11
PERTUSSIS	9	9	4	7	9	10	24	21	4	11	7	8
RMSF	0	0	1	1	1	1	2	1	0	0	0	0
RUBELLA	6	2	2	0	2	2	1	0	1	4	1	1
SALMONELLOSIS	105	82	115	131	164	226	237	219	235	196	133	78
SHIGELLOSIS	265	339	403	413	474	470	438	535	357	404	308	175
SYPHILIS, PRIMARY/SECONDARY D	198	242	242	180	213	228	163	185	250	262	197	170
TETANUS	2	0	2	0	0	1	1	0	0	1	0	0
TUBERCULOSIS ${ }^{\text {a }}$	83	69	153	178	194	264	251	230	216	114	211	430
TULAREMIA	3	0	0	0	0	0	1	0	0	1	0	0
TYPHOID FEVER	1	0	0	1	0	4	3	2	2	0	1	1
TYPHUS FEVER, MURINE	0	2	0	1	2	4	0	0	0	0	1	1
VIBRIO INFECTIONS	0	1	1	2	2	2	1	5	2	1	0	0

- TOTALS ARE BY MONTH OF REPORT RATHER THAN MONTH OF ONSET

TABLE IV

REPORTED CASES OF SELECTED DISEASES BY AGE GROUP TEXAS, 1993

DISEASE	< 1	14	5-9	10-14	15-19	20-29	30-39	4049	50-59	$60+$	UNK
AMEBIASIS	2	9	5	1	1	14	25	13	7	8	1
BOTULISM	2	0	0	0	0	0	0	0	0	0	0
BRUCELLOSIS	0	1	7	1	4	6	6	2	1	6	0
CAMPYLOBACTERIOSIS	31	112	71	34	37	179	153	87	44	63	39
CHOLERA	0	1	0	0	0	0	1	0	0	0	0
COCCIDIOIDOMYCOSIS	0	0	0	2	2	5	10	13	10	22	2
DENGUE	0	0	0	0	0	1	1	0	0	0	0
ENCEPHALITIS	1	3	7	3	5	5	7	10	6	14	0
GONORRHEA	12	20	14	629	9,734	14,185	4,047	1,039	240	120	82
HANSEN'S DISEASE	0	0	0	0	3	4	5	5	4	10	0
H. INFLUENZAE INFECTIONS	3	7	6	3	0	3	5	6	2	16	0
HEPATITIS A	10	233	624	352	190	538	436	188	64	98	65
HEPATITIS B	4	9	15	27	105	410	369	176	84	86	70
HEPATITIS C	0	3	6	3	9	120	157	63	13	8	2
HEPATITIS NANB	0	1	2	4	3	3	9	6	0	0	0
HEPATITIS UNSPECIFIED	0	14	33	12	11	21	24	20	7	12	3
HISTOPLASMOSIS	0	0	0	0	0	7	29	17	6	7	2
LEGIONELLOSIS	0	1	0	0	1	2	3	2	4	7	2
LISTERIOSIS	0	1	1	0	2	3	3	4	2	10	2
LYME DISEASE	0	1	5	4	0	3	9	15	4	6	1
MALARIA	0	7	7	4	1	9	4	3	8	3	2
MEASLES	2	6	0	1	0	0	1	0	0	0	0
MENINGITIS, ASEPTIC	118	143	192	99	86	261	222	79	26	34	28
MENINGITIS, OTHER/BACTERIAL	16	45	25	15	13	21	45	24	16	39	1
MENINGOCOCCAL INFECTIONS	27	23	35	13	13	17	13	7	6	18	0
MUMPS	2	39	93	47	13	17	12	2	1	3	2
PERTUSSIS	22	49	27	8	3	7	1	0	0	0	4
RMSF	0	1	0	2	0	0	3	1	0	0	0
RUBELLA	0	1	7	4	3	4	0	3	0	0	0
SALMONELLOSIS	38	506	324	157	63	201	158	105	66	184	122
SHIGELLOSIS	280	1,457	1,342	307	137	476	347	120	43	74	189
SYPHILIS, PRIMARY/SECONDARY	0	0	0	22	325	989	787	269	96	41	1
TETANUS	0	0	0	0	0	0	0	0	3	4	0
TULAREMIA	0	0	0	1	0	0	0	3	1	0	0
TYPHOID FEVER	0	1	1	2	1	5	4	1	0	0	0
TYPHUS FEVER, MURINE	0	0	0	1	2	0	3	1	1	4	0
VIBRIO INFECTIONS	0	0	2	0	1	4	1	4	0	5	0
TUBERCULOSIS AGE GROUPS--->	0-4	5-9	10-14	15-19	20-24	25-34	35-44	45-54	55-64	$65+$	UNK
TUBERCULOSIS	103	38	22	58	136	459	528	368	249	432	0

TABLE V

RATES PER 100,000 OF SELECTED DISEASES BY AGE GROUP TEXAS, 1993

DISEASE	< 1	1-4	5-9	10-14	15-19	20-29	30-39	40-49	50-59	$60+$	UNK
AMEBIASIS	0.6	0.7	0.4	0.1	0.1	0.5	0.8	0.6	0.5	0.3	-
BOTULISM	0.6	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	-
BRUCELLOSIS				0.1	0.3	0.2	0.2	0.1	0.1	0.2	-
CAMPYLOBACTEROSIS			1	2.4	2.9	6.2	4.9	3.7	2.9	2.6	-
CHOLFRA	0.0	-.	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	-
COCCIDIODOMYCOSIS	0.0	0.0	0.0	0.1	0.2	0.2	0.3	0.6	0.7	0.9	-
DENGUE	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	-
ENCEPHALITIS	0.3	0.2	0.5	0.2	0.4	0.2	0.2	0.4	0.4	0.6	
GONORRHEA	3.8	1.7	1.0	44.5	749.8	493.3	128.9	44.0	16.0	4.9	
HANSEN'S DISEASE	0.0	0.0	0.0	0.0	0.2	0.1	0.2	0.2	0.3	0.4	
H. INFLUENZAE INFECTIONS	0.9	0.6	0.4	0.2	0.0	0.1	0.2	0.3	0.1	0.7	
HEPATITIS A	3.1	19.4	44.3	24.9	14.6	18.7	13.9	8.0	4.3	4.0	
HEPATITIS B	1.3	0.7	1.1	1.9	8.1	14.3	11.8	7.5	5.6	3.5	- .
HEPATITIS C	0.0	0.2	0.4	0.2	0.7	4.2	5.0	2.7	0.9	0.3	-
HEPATITIS NANB	0.0	0.1	0.1	0.3	0.2	0.1	0.3	0.3	0.0	0.0	-
HEPATITIS UNSPECIFIED	0.0	1.2	2.3	0.8	0.8	0.7	0.8	0.8	0.5	0.5	-
HISTOPLASMOSIS	0.0	0.0	0.0	0.0	0.0	0.2	0.9	0.7	0.4	0.3	-
LEGIONELLOSIS	0.0	0.1	0.0	0.0	0.1	0.1	0.1	0.1	0.3	0.3	-
LISTERIOSIS	0.0	0.1	0.1	0.0	0.2	0.1	0.1	0.2	0.1	0.4	-
LYME DISEASE	0.0	0.1	0.4	0.3	0.0	0.1	0.3	0.6	0.3	0.2	-
MALARIA	0.0	0.6	0.5	0.3	0.1	0.3	0.1	0.1	0.5	0.1	-
MEASLES	0.6	0.5	0.0	0.1	0.0	0.0	0.0	0.0	0.0	0.0	-
MENINGITIS, ASEPTIC	37.2	11.9	13.6	7.0	6.6	9.1	7.1	3.3	1.7	1.4	-
MENINGITIS, BACTERIALIOTHER	5.0	3.7	1.8	1.1	1.0	0.7	1.4	1.0	1.1	1.6	-
MENINGOCOCCAL INFECTIONS	8.5	1.9	2.5	0.9	1.0	0.6	0.4	0.3	0.4	0.7	-
MUMPS	0.6	3.2	6.6	3.3	1.0	0.6	0.4	0.1	0.1	0.1	-
PERTUSSIS	6.9	4.1	1.9	0.6	0.2	0.2	0.0	0.0	0.0	0.0	-
RMSF	0.0	0.1	0.0	0.1	0.0	0.0	0.1	0.0	0.0	0.0	-
RUBELLA	0.0	0.1	0.5	0.3	0.2	0.1	0.0	0.1	0.0	0.0	-
SALMONELLOSIS	12.0	42.1	23.0	11.1	4.9	7.0	5.0	4.4	4.4	7.5	-
SHIGELLOSIS	88.9	121.2	95.3	21.7	10.6	16.6	11.1	5.1	2.9	3.0	\bullet
SYPHILS, PRIMARY/SECONDARY	0.0	0.0	0.0	1.6	25.0	34.4	25.1	11.4	6.4	1.7	
TETANUS	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.2	0.2	
TULAREMIA	0.0	0.0	0.0	0.1	0.0	0.0	0.0	0.1	0.1	0.0	
TYPHOID FEVER	0.0	0.1	0.1	0.1	0.1	0.2	0.1	0.0	0.0	0.0	
TYPHUS FEVER, MURINE	0.0	0.0	0.0	0.1	0.2	0.0	0.1	0.0	0.1	0.2	
VIBRIO INFECTIONS	0.0	0.0	0.1	0.0	0.1	0.1	0.0	0.2	0.0	0.2	-

TABLE VI

REPORTED CASES OF SELECTED DISEASES BY PUBLIC HEALTH REGIONS TEXAS, 1993

DISEASE	$\begin{gathered} 1993 \\ \text { TOTAL } \end{gathered}$	PHR 1	PHR 2	PHR 3	PHR 4	PHR 5	PHR 6	PHR 7	PHR 8	PHR 9	PHR 10	PHR 11
AMEBIASIS	86	0	15	11	0	0	14	17	4	1	5	19
BOTULISM	2	0	0	0	0	0	0	0	0	1	1	0
BRUCELLOSIS	34	0	0	12	0	0	3	3	0	0	2	14
CAMPYLOBACTERIOSIS	849	41	14	159	8	16	204	150	138	25	62	32
COCCIDIOIDOMYCOSIS	67	3	1	15	0	0	4	5	7	6	14	12
DENGUE	2	0	0	1	0	0	1	0	0	0	0	0
ENCEPHALITIS	61	0	2	13	3	0	20	12	4	1	3	3
GONORRHEA	30,122	1,200	506	10,574	1,298	694	8,560	3,786	2,120	546	286	552
HANSEN'S DISEASE	30	0	0	7	0	2	7	1	7	0	0	7
H. INFLUENZAE INFECTIONS	51	4	0	6	7	1	20	4	5	0	2	2
HEPATITIS A	2,798	69	56	926	55	7	411	155	458	48	246	367
HEPATITIS B	1,354	52	31	567	58	21	260	114	121	33	42	55
HEPATITIS C	384	16	23	157	5	9	23	57	43	24	6	21
HEPATITIS NANB	28	3	0	1	0	0	23	0	0	0	1	0
HEPATITIS UNSPECIFIED	157	0	3	48	0	0	35	26	8	1	3	33
HISTOPLASMOSIS	69	4	1	18	7	0	13	14	9	0	1	2
LEGIONELLOSIS	22	3	0	3	0	0	10	4	0	0	2	0
LISTERIOSIS	28	0	0	4	1	0	10	6	5	1	0	1
LYME DISEASE	48	2	7	14	4	1	6	9	2	0	1	2
MALARIA	48	0	1	13	1	1	25	5	0	0	1	1
MEASLES	10	0	0	0	0	0	9	0	0	0	1	0
MENINGITIS, ASEPTIC	1,329	110	91	367	105	7	204	239	117	44	20	25
MENINGITIS, OTHER/BACTERIAL	262	5	8	52	10	5	77	59	18	6	8	14
MENINGOCOCCAL INFECTIONS	157	4	3	56	14	7	39	19	4	6	2	3
MUMPS	231	14	12	45	2	5	45	14	35	11	15	33
PERTUSSIS	121	0	2	47	11	4	20	13	13	1	4	6
RMSF	7	1	1	2	2	0	1	0	0	0	0	0
RUBELLA	22	5	1	5	0	1	0	2	4	0	2	2
SALMONELLOSIS	1,924	155	59	366	72	43	291	261	202	94	191	190
SHIGELLOSIS	4,581	301	144	670	151	71	536	1,148	883	200	189	288
SYPHILIS, PRIMARY/SECONDARY	2,530	12	33	849	119	340	754	256	93	37	18	29
TETANUS	7	0	1	0	0	0	2	1	0	0	0	3
TUBERCULOSIS	2393	39	24	496	94	33	933	175	179	32	78	310
TULAREMIA	5	0	0	1	1	0	1	0	1	0	0	1
TYPHOID FEVER	15	1	0	4	0	0	5	1	2	1	1	0
TYPHUS, MURINE	12	0	1	0	0	0	0	0	0	0	0	11
VIBRIO INFECTIONS	17	0	1	0	0	0	10	3	1	0	0	2

TABLE VII

RATES OF SELECTED DISEASES PER 100,000 POPULATION BY PUBLIC HEALTH REGIONS TEXAS, 1993

DISEASE	$\begin{aligned} & 1993 \\ & \text { RATE } \end{aligned}$	PHR 1	PHR 2	PHR 3	PHR 4	PHR 5	PHR 6	PHR 7	PHR 8	PHR 9	PHR 10	PHR 11
AMEBIASIS	0.5	0.0	2.8	0.2	0.0	0.0	0.3	0.9	0.2	0.2	0.7	1.3
BOTULISM	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.2	0.1	0.0
BRUCELLOSIS	0.2	0.0	0.0	0.3	0.0	0.0	0.1	0.2	0.0	0.0	0.3	1.0
CAMPYLOBACTERIOSIS	4.2	5.5	2.6	3.5	0.9	2.4	5.0	8.3	7.3	4.7	9.3	2.2
COCCIDIOIDOMYCOSIS	0.4	0.4	0.2	0.3	0.0	0.0	0.1	0.3	0.4	1.1	2.1	0.8
dengue	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
ENCEPHALITIS	0.4	0.0	0.4	0.3	0.3	0.0	0.5	0.7	0.2	0.2	0.4	0.2
GONORRHEA	167.7	160.7	95.7	229.6	140.4	102.5	208.1	208.2	112.3	102.8	42.9	37.9
HANSEN'S DISEASE	0.2	0.0	0.0	0.2	0.0	0.3	0.2	0.1	0.4	0.0	0.0	0.5
H. INFLUENZAE INFECTIONS	0.3	0.5	0.0	0.1	0.8	0.1	0.5	0.2	0.3	0.0	0.3	0.1
HEPATITIS A	15.6	9.2	10.6	20.1	5.9	1.0	10.0	8.5	24.3	9.0	36.9	25.2
HEPATITIS B	7.5	7.0	5.9	12.3	6.3	3.1	6.3	6.3	6.4	6.2	6.3	3.8
HEPATITIS C	2.1	2.1	4.4	3.4	0.5	1.3	0.6	3.1	2.3	4.5	0.9	1.4
HEPATITIS NANB	0.2	0.4	0.0	0.0	0.0	0.0	0.6	0.0	0.0	0.0	0.1	0.0
HEPATITIS UNSPECIFIED	0.9	0.0	0.6	1.0	0.0	0.0	0.9	1.4	0.4	0.2	0.4	2.3
HISTOPLASMOSIS	0.4	0.5	0.2	0.4	0.8	0.0	0.3	0.8	0.5	0.0	0.1	0.1
LEGIONELLOSIS	0.1	0.4	0.0	0.1	0.0	0.0	0.2	0.2	0.0	0.0	0.3	0.0
LISTERIOSIS	0.2	0.0	0.0	0.1	0.1	0.0	0.2	0.3	0.3	0.2	0.0	0.1
LYME DISEASE	0.4	0.3	1.3	0.3	0.4	0.1	0.1	0.5	0.1	0.0	0.1	0.1
MALARIA	0.4	0.0	0.2	0.3	0.1	0.1	0.6	0.3	0.0	0.0	0.1	0.1
MEASLES	0.1	0.0	0.0	0.0	0.0	0.0	0.2	0.0	0.0	0.0	0.1	0.0
MENINGITIS, ASEPTIC	7.5	14.7	17.2	8.0	11.4	1.0	5.0	13.1	6.2	8.3	3.0	1.7
MENINGITIS, BACTERIAL/OTHER	1.5	0.7	1.5	1.1	1.1	0.7	1.9	3.2	1.0	1.1	1.2	1.0
MENINGOCOCCAL INFECTIONS	0.9	0.5	0.6	1.2	1.5	1.0	0.9	1.0	0.2	1.1	0.3	0.2
MUMPS	1.3	1.9	2.3	1.0	0.2	0.7	1.1	0.8	1.9	2.1	2.2	2.3
PERTUSSIS	0.7	0.0	0.4	1.0	1.2	0.6	0.5	0.7	0.7	0.2	0.6	0.4
RMSF	0.0	0.1	0.2	0.0	0.2	0.0	0.0	0.0	0.0	0.0	0.0	0.0
RUBELLA	0.1	0.7	0.2	0.1	0.0	0.1	0.0	0.1	0.2	0.0	0.3	0.1
SALMONĖLLOSIS	10.7	20.8	11.2	7.9	7.8	6.4	7.1	14.4	10.7	17.7	28.6	13.0
SHIGELLOSIS	25.5	40.3	27.2	14.5	16.3	10.5	13.0	63.1	46.8	37.6	28.3	19.8
SYPHILIS, PRIMARY/SECONDARY	14.1	1.6	6.2	18.4	12.9	50.2	18.3	14.1	4.9	7.0	2.7	2.0
TETANUS	0.0	0.0	0.2	0.0	0.0	0.0	0.0	0.1	0.0	0.0	0.0	0.2
TUBERCULOSIS	13.3	5.2	4.5	10.8	10.2	4.9	22.7	9.6	9.5	6.0	11.7	21.3
TULAREMIA	0.0	0.0	0.0	0.0	0.1	0.0	0.0	0.0	0.1	0.0	0.0	0.1
TYPHOID FEVER	0.1	0.1	0.0	0.1	0.0	0.0	0.1	0.1	0.1	0.2	0.1	0.0
TYPHUS, MURINE	0.1 .	0.0	0.2	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.8
VIBRIO INFECTIONS	0.1	0.0	0.2	0.0	0.0	0.0	0.2	0.2	0.1	0.0	0.0	0.1

Appendix B

Reportable Conditions in Texas

Several Texas laws require specific information regarding reportable conditions to be provided to the Texas Department of Health. The Communicable Disease Prevention and Control Act (Health \& Safety Code, Chapter 81) requires physicians, dentists, veterinarians, and chiropractors to report, after the first professional encounter, each patient examined who is suspected of having a reportable disease. Also required to report are certain individuals from hospitals, laboratories, and schools. Detailed rules on the reporting of notifiable diseases and conditions and the duties of local health authorities may be found in Article 97, Title 25, Texas Administrative Code.

Diseases reportable immediately by telephone to local health departments or Texas Department of Health by name, age, sex, race/ethnicity, DOB, address, telephone number, disease, date of onset, physician, and method of diagnosis.

TDH Infectious Disease Epidemiology
\& Surveillance Division
(CALL TOLL-FREE 1-800-252-8239)

TDH Immunization Division
(CALL TOLL-FREE 1-800-252-9152)

Pertussis
Poliomyelitis, acute paralytic

Outbreaks, exotic diseases, and unusual group expressions of illness which may be of public health concern also should be reported immediately.
Diseases reportable to local health departments ${ }^{2}$ by name, age, sex, race/ethnicity, DOB, address, telephone number, disease, date of onset/occurrence, physician, and method of diagnosis. Report these diseases on a weekly basis except for rubella and tuberculosis which should be reported within one working day.

Acquired immune deficiency syndrome (AIDS) ${ }^{3}$
Amebiasis
Anthrax
Asbestosis ${ }^{4}$
Botulism (infant)
Brucellosis
Campylobacteriosis
Chancroid ${ }^{5}$
Chlamydia trachomatis infection ${ }^{5}$
Dengue
Encephalitis (specify etiology)
Escherichia coli O157:H7 infection
Gonorrhea ${ }^{5}$
Hansen's Disease (leprosy)
Hantavirus infection

Hemolytic uremic syndrome (HUS)
Hepatitis, acute viral (specify type) ${ }^{6}$
Injuries (specify type) ${ }^{7}$
Spinal cord injury
Near drowning
Lead, adult elevated blood ${ }^{4}$
Legionellosis
Listeriosis
Lyme disease
Malaria
Meningitis (specify type) ${ }^{8}$
Mumps
Pesticide poisoning, acute occupational ${ }^{4}$
Relapsing fever
Rocky Mountain spotted fever

Rubella
Salmonellosis, including typhoid
Shigellosis
Silicosis ${ }^{4}$
Streptococcal disease, invasive Group A
Syphilis ${ }^{5}$
Tetanus
Trichinosis
Tuberculosis ${ }^{\text {g }}$
Tuberculosis infection in persons
less than 15 years of age ${ }^{8}$
Typhus
Vibrio infections

By Number Only: Chickenpox
By last 4 digits of social security number; sex; race/ethnicity; DOB; city, county, and zip of patient's residence; and name, address, and telephone number of physician: HIV infection in persons 13 years of age and older.

By name; sex; race/ethnicity; DOB; city, county, and zip of patient's residence; and name, address, and telephone number of physician: HIV infection in persons less than 13 years of age.

[^2]

GLOSSARY

ANENCEPHALY. A severe birth defect caused by abnormal development of the brain during the first trimester; congenital absence of the cranial vault, with cerebral hemispheres completely missing or reduced to small masses attached to the base of the skull.

ASBESTOSIS. A pneumoconiosis produced by inhalation of asbestos fibers. A chronic disease with slow onset that usually requires several years of exposure depending on the intensity of exposure. Characterized clinically by diffuse interstitial pulmonary fibrosis, often accompanied by thickening and sometimes calcification of the pleura. Shortness of breath on exertion is the most common presenting symptom. A chronic dry cough is common, but the cough may be productive, especially among smokers. Finger clubbing may appear in advanced cases.

AVERAGE. The arithmetic mean. The measure of central location calculated by adding together all the individual values in a group of measurements and dividing by the number of values in the group.

CHRONIC CARRIER. A state of persistent infectivity and ongoing inflammation irrespective of the presence or absence of disease symptoms.

CLUSTER. An aggregation of cases of a disease or other health-related condition, particularly cancer and birth defects, which are closely grouped in time and place. The number of cases may or may not exceed the expected number; frequently the expected number is not known.

INCIDENCE RATE. (Sometimes referred to simply as incidence.) A measure of the frequency with which an event, such as a new case of illness, occurs in a population over a period of time. The numerator is the number of new cases occurring during a given time period; the denominator is the population at risk during the same time period.

MEAN, ARITHMETIC. See average.
MEDIAN. The measure of central location which divides a set of data into two equal parts; the middle of a set of data that has been put into rank order; a measure of central tendency that is the middle value in an orderly set of values. (For example: For the following set of incubation periods: $24,25,29,30,31$ - the median is 29 . Two observations are larger, and two are smaller.)

MORBIDITY. Any departure, subjective or objective, from a state of physiological or psychological well-being.

MORTALITY RATE. A measure of the frequency of occurrence of death in a defined population during a specified interval of time.

NEAR DROWNING. Survival for at least 24 hours following asphyxiation due to submersion in water.

PERIOD PREVALENCE. The amount of a particular disease present in a population over an extended period of time.

POINT PREVALENCE. The amount of a particular disease present in a population at a single point in time.

PREVALENCE RATE. (Sometimes simply referred to as prevalence.) The amount of a given disease or other condition in a given population at a designated time; the proportion of a population that is affected by a disease or condition at a given point in time; the numerator is the number of all cases present during a given time period, and the denominator is the population during the same time period.

RATE. An expression of the frequency with which an event occurs in a defined population. Usually defined as the number of cases per 100,000 population.

SENTINEL PROVIDER SYSTEM. A system used to gauge the occurrence of disease in an area. This active surveillance is conducted using a system consisting of individual physicians and clinic/hospital staff who consent to be contacted by the surveillance staff on a regular basis. When contacted, reports of various reportable diseases are solicited.

SILICOSIS. Refers to several lung fibroses that arise from inhaling crystalline forms of silica (silicon dioxide $\left[\mathrm{SiO}_{2}\right]$]. Silicosis reduces the ability of the lungs to work properly and way eventually cause death from heart failure or from destruction of lung tissue.

> 1. Nodular silicosis, also called "classic" or "pure" silicosis. Characterized by hyaline and nodular lung lesions that may aggregate into large fibrotic masses (conglomeratesilicosis or progressive massive fibrosis [PMF]).
2. Acute silicosis. A rapidly developing disorder having features of alveolar proteinosis and fibrosing alveolitis.
3. Mixed dust fibrosis. A disorder showing fibrotic lesions (some of which may be typical "silicotic" nodules) and others irregular in shape (that arise from inhaling dusts of silica and other agents [eg, iron oxide, coal, welding fumes]).
4. Diatomaceous earth pneumoconiosis. A condition with fibrosing alveolitis and a prominent cellular reaction. Diagnosis is based on symptoms, exposure history, physical examination, chest x-rays, pulmonary function tests, and sometimes pathological examination of tissue. Symptoms include shortness of breath, coughing, tiredness, weakness, blue or gray skiñ color, loss of appetite, and chest pains.

TEXAS OCCUPATIONAL DISEASE REPORTING ACT. An act passed by the 69th Legislature in 1985. This act requires that physicians and laboratory directors report adult elevated blood lead levels and cases of suspected or confirmed asbestosis and silicosis. The act also gave the Texas Board of Health the authority to add other preventable occupational diseases to the list. Later that same year, the Board made acute occupational pesticide poisoning a reportable condition.

VIRUS ISOLATION. A laboratory process whereby an active virus is successfully recovered from a patient's specimen.

Associateship for Disease Control and Prevention
Texas Department of Health
1100 West 49th Street Austin, Texas 78756

[^0]: *Public Law 102-321,51926.

[^1]: STATEWIDE TOTALS
 17,958,512

[^2]: 'Includes meningitis, septicemia, cellulitis, epiglottitis, osteomyelitis, pericarditis, and septic arthritis.
 ${ }^{2}$ The local or regional health department shall collect reports of diseases and transmit them at weekly intervals to the TDH.
 ${ }^{3}$ Reported by physician only once per case, following initial physician diagnosis.
 ${ }^{4}$ The OccupationalDisease Reporting Act, (Health \&Safety Code, Chapter 84) requires physicians and directors of laboratories to report these occupationally related diseases to the Texas Department of Health at 512/458-7269.
 ${ }^{5}$ Syphilis, gonorrhea, chancroid, and laboratory-confirmedChlamydia trachomatis infections are reportablein accordance with Sections 97.132, 97.134, and 97.135 of TAC. Form STD-27, "Confidential Report of Sexually Transmitted Disease," shall be used to report these sexually transmitted diseases. Questions may be directed to 512/458-7463.
 ${ }^{6}$ Includes types: A; B C; D (Delta); E; non-A, non-B; and unspecified.
 ${ }^{7}$ The Injury Prevention and Control Act (Health \& Safety Code, Chapter 87) requires physicians, medicalexaminers, and Justicesof the Peace to report the injuries to local health departments or to the Texas Department of Health 512/458-7266.
 ${ }^{8}$ Includes aseptic/viral, bacterial (specify etiology), fungal, and other.
 ${ }^{9}$ Report tuberculosison Form TB-400, "Report of Case and Patient Services." Questions may be directed to 512/458-7448.

